• Title/Summary/Keyword: 지상좌표

Search Result 195, Processing Time 0.025 seconds

Applicability Assessment of Disaster Rapid Mapping: Focused on Fusion of Multi-sensing Data Derived from UAVs and Disaster Investigation Vehicle (재난조사 특수차량과 드론의 다중센서 자료융합을 통한 재난 긴급 맵핑의 활용성 평가)

  • Kim, Seongsam;Park, Jesung;Shin, Dongyoon;Yoo, Suhong;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.841-850
    • /
    • 2019
  • The purpose of this study is to strengthen the capability of rapid mapping for disaster through improving the positioning accuracy of mapping and fusion of multi-sensing point cloud data derived from Unmanned Aerial Vehicles (UAVs) and disaster investigation vehicle. The positioning accuracy was evaluated for two procedures of drone mapping with Agisoft PhotoScan: 1) general geo-referencing by self-calibration, 2) proposed geo-referencing with optimized camera model by using fixed accurate Interior Orientation Parameters (IOPs) derived from indoor camera calibration test and bundle adjustment. The analysis result of positioning accuracy showed that positioning RMS error was improved 2~3 m to 0.11~0.28 m in horizontal and 2.85 m to 0.45 m in vertical accuracy, respectively. In addition, proposed data fusion approach of multi-sensing point cloud with the constraints of the height showed that the point matching error was greatly reduced under about 0.07 m. Accordingly, our proposed data fusion approach will enable us to generate effectively and timelinessly ortho-imagery and high-resolution three dimensional geographic data for national disaster management in the future.

3D Model Construction and Evaluation Using Drone in Terms of Time Efficiency (시간효율 관점에서 드론을 이용한 3차원 모형 구축과 평가)

  • Son, Seung-Woo;Kim, Dong-Woo;Yoon, Jeong-Ho;Jeon, Hyung-Jin;Kang, Young-Eun;Yu, Jae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.497-505
    • /
    • 2018
  • In a situation where the amount of bulky waste needs to be quantified, a three-dimensional model of the wastes can be constructed using drones. This study constructed a drone-based 3D model with a range of flight parameters and a GCPs survey, analyzed the relationship between the accuracy and time required, and derived a suitable drone application technique to estimate the amount of waste in a short time. Images of waste were photographed using the drone and auto-matching was performed to produce a model using 3D coordinates. The accuracy of the 3D model was evaluated by RMSE calculations. An analysis of the time required and the characteristics of the top 15 models with high accuracy showed that the time required for Model 1, which had the highest accuracy with an RMSE of 0.08, was 954.87 min. The RMSE of the 10th 3D model, which required the shortest time (98.27 min), was 0.15, which is not significantly different from that of the model with the highest accuracy. The most efficient flight parameters were a high overlapping ratio at a flight altitude of 150 m (60-70% overlap and 30-40% sidelap) and the minimum number of GCPs required for image matching was 10.

A Study on Decision Making of Cadastral Surveying Results using Drone Photogrammetry (드론항공사진측량을 활용한 지적측량 성과결정에 관한 연구)

  • Lim, Seong-Ha;Kim, Ho-Jong;Lee, Don-Sun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.79-95
    • /
    • 2021
  • This study evaluates the applicability of determining cadastral surveying results using drone photogrammetry during the phase of determining cadastral surveying results, which is the most important stage of cadastral surveying, but known to be hardly objective and highly probable in causing a subjective misjudgment or mistake made by a surveyor. In the experiment to analyze the accuracy of boundary point extraction from drone photogrammetry results, by comparing the coordinate area of 22 parcels extracted from 2D and 3D images with the coordinate area measured from ground survey, the difference could be quantified as RMSE of 1.44m2 for 2D and 0.32m2 for 3D images. In addition, experiments to evaluate the determination of cadastral surveying result based on drone photogrammetry survey showed the RMSE measure of 0.346m towards N direction and 0.296m towards Y direction in comparison to the existing surveying results through data investigation. Based on these experiments, it is judged that cadastral surveying result based on drone photogrammetry can be determined without needing to conduct a location survey with an accuracy of approximately 0.3m in the graphical area, which also leads to possibility of reducing individual errors if drones images are used along with ground survey by objectifying the process of cadastral surveying results.

Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry (도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석)

  • CHO, Han-Kwang;CHANG, Ki-Tae;HONG, Seong-Jin;HONG, Goo-Pyo;KIM, Sang-Hwan;KWON, Se-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.234-252
    • /
    • 2020
  • This paper is to verify the effectiveness of 'Hybrid Disaster Management Strategy' that integrates 'RTM(Real-time Monitoring) based On-line' and 'UAV based Off-line' system. For landslide prone area where sensors were installed, the conventional way of risk management so far has entirely relied on RTM data collected from the field through the instrumentation devices. But it's not enough due to the limitation of'Pin-point sensor'which tend to provide with only the localized information where sensors have stayed fixed. It lacks, therefore, the whole picture to be grasped. In this paper, utilizing 'Digital Photogrammetry Software Pix4D', the possibility of inference for the deformation of ungauged area has been reviewed. For this purpose, actual measurement data from RTM were compared with the estimated value from 3D point cloud outcome by UAV, and the consequent results has shown very accurate in terms of RMSE.

Development of an Aerial Precision Forecasting Techniques for the Pine Wilt Disease Damaged Area Based on GIS and GPS (GIS와 GPS를 이용한 소나무재선충병 피해지 항공정밀예찰 기법 개발)

  • Kim, Joon-Bum;Kim, Dong-Yun;Park, Nam-Chang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2010
  • The spatial distribution characteristics of damaged trees by the pine wilt disease appear scattered spots spreading from single dead trees. That is the reason why it is difficult to early detect damage and to prevent from extensive damage. Thus, it is very important to forecast and analyze the damage occurrences, to establish strategies for prevention, and to supervise them. However, conventional survey which observes around roads or residential areas by naked eyes was impossible to investigate completely, missing target areas and dangerous areas. Therefore, aerial forecasting techniques on the damaged area were developed using GIS, GPS, and helicopters for an accurate observation of systematic and scientific approach in this study. Moreover, advantages of the techniques application were confirmed to survey 972 dead tree samples at 349 position-coordinates in 32 cities (about $28,810km^2$), 2005. This study is expected to apply widely to find dead trees and the causes, particularly by pine wilt disease.

A Study on the Low Vibration Design of Paddle Type Composite Rotor Blade for Helicopter (Paddle형 복합재료 헬리콥터 로터 블레이드 저진동 설계 기술 연구)

  • Kim, Deok Gwan;Ju, Jin;Lee, Myeong Gyu;Hong, Dan Bi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.99-104
    • /
    • 2003
  • This paper described the general dynamic point for rotor design and the design procedure of low vibration blade. Generally, rotor rotating natural frequencies are determined to minimize hub loads, blade vibration and to suppress ground resonance at rotor design stage. First, through rotor frequency diagram, natural frequencies must be far away from resonance point and rotating loads generated from blade can be transformed to non-rotating load to predict fuselage vibration. Vibration level was predicted at each forward flight condition by calculating cockpit's vertical acceleration transferred from non-rotating hub load assuming a fuselage as a rigid body. This design method is applied to design current Next-generation Rotor System Blade(NRSB) and will be applied to New Rotor which will be developed Further.

The Analysis of water quality using Satellite Remotely Sensed Imagery (위성사진을 이용한 해양환경분석)

  • Shin, Bum-Shick;Kim, Kyu-Han;Pyun, Chong-Kun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1940-1944
    • /
    • 2006
  • 현지관측을 통한 지속적이고 광범위한 지역에 대해 정확하고 정밀하게 조사하여 종합적인 분석과 예측, 결정과정에 있어서, 복잡한 해양의 특성, 여러가지 조사 작업상의 난점, 경제적, 시간적으로 많은 어려움이 따르게 된다. 하지만, 위성원격탐사와 GIS를 이용한 해양환경파악기법은 현지관측에서 얻을 수 있는 제한적인 자료이외의 다량의 자료를 정성 및 정량적으로 데이터베이스화하여 분석함과 동시에 가시화함으로써 해양개발로 인해 불가피하게 초래될 수밖에 없는 환경을 보다 정확하게, 객관적으로 분석하여 장기적으로 예측할 수 있는 고도화된 환경조사 및 평가 기술이라고 할 수 있다. 본 연구에서는 고해상도 위성자료인 Landsat TM 영상과 NOAA AVHRR 자료를 이용하여 수온 및 클로로필을 추출하였으며, GIS를 이용하여 현지관측자료 및 수치해도를 기초로 공간분포도를 작성함으로서 그 외의 수질환경요소를 산출하였다. 위성영상분석은 현장조사와 같은 시점의 Landsat TM 위성영상을 획득하여, 위성 영상은 지구의 곡률과 자전, 위성체의 자세와 고도 및 속도, 그리고 센서의 기하 특성으로 인하여 실제의 지형에 대하여 기하학적 왜곡을 가지고 있으므로 지형도에서 지상기준점(Ground Control Point, GCP)를 추출하여 ERDAS Imagine으로 UTM좌표체계에 따른 기하보정(Geometric Correction)을 실시하였으며, 동일한 시기의 NOAA AVHRR영상을 데이터로 처리하여 수온자료를 추출하였다. 표층수온과 현장관측에 의한 클로로필을 수치 지도화하기 위하여 열적외선영역인 TM band 6의 분광특성값(Digital Number)과 동일한 위치의 수온자료를 기초로 회귀분석을 실시함으로써 수온추출 알고리즘을 도출하여, 분석데이터의 신뢰도를 검증하였으며, 수온, 클로로필, 투명도 등을 위성원격탐사 자료와 GIS를 이용하여 공간분석을 실시하고, 공간분포도를 작성함으로써 대상해역의 해양환경을 파악하였다. 본 연구결과, 분석된 위성자료가 현장조사에 의한 검증이 이루어지지 않을 경우, 영상자료분석을 통한 표층수온 추출은 대기 중의 수증기와 에어로졸에 의한 계산치의 오차가 반영되기 때문에 실측치 보다 낮게 평가 될 수 있으므로, 반드시 이에 대한 검증이 필요함을 알 수 있었다. 현지관측에 비해 막대한 비용과 시간을 절약할 수 있는 위성영상해석방법을 이용한 방법은 해양수질파악이 가능할 것으로 판단되며, GIS를 이용하여 다양하고 복잡한 자료를 데이터베이스화함으로써 가시화하고, 이를 기초로 공간분석을 실시함으로써 환경요소별 공간분포에 대한 파악을 통해 수치모형실험을 이용한 각종 환경영향의 평가 및 예측을 위한 기초자료로 이용이 가능할 것으로 사료된다.

  • PDF

Problems and Improvement Methods of Cadastral Confirmation Surveying (지적확정측량의 문제점과 개선방안)

  • Mun, Seung-Ju
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.313-323
    • /
    • 2016
  • Recently, "Cadastral Confirmation Surveying" has been established to promote efficiently and systematically its work. To do so, it is necessary that cadastral control point should be set up and transverse grid coordinates should be determined for high accuracy and boundary restoration based on the cadastral control point. This study expects the potentially institutional problem of detail surveying and the limitation of Network-Real Time Kinematic, introduced to measure the cadastral control point first in the issued regulation, and thus presents the improvement and the management of the block boundary of larger parcel as solutions. This can be applied promptly, when the location difference of ground and border, registered in cadastral record for quake and others, occurs. Thus, the public confidence of cadastral record may become higher and relevant social costs get reduced by the advanced prevention effect of boundary dispute, which represents much to the management of cadastral institution. Provided cadastral confirmation surveying is implemented with the management of the block boundary of larger parcel, proposed in this study.

Comparison and Performance Validation of On-line Aerial Triangulation Algorithms for Real-time Image Georeferencing (실시간 영상 지오레퍼런싱을 위한 온라인 항공삼각측량 알고리즘의 비교 및 성능 검증)

  • Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.55-67
    • /
    • 2012
  • Real-time image georeferencing is required to generate spatial information rapidly from the image sequences acquired by multi-sensor systems. To complement the performance of position/attitude sensors and process in real-time, we should employ on-line aerial triangulation based on a sequential estimation algorithm. In this study, we thus attempt to derive an efficient on-line aerial triangulation algorithm for real-time georeferencing of image sequences. We implemented on-line aerial triangulation using the existing Given transformation update algorithm, and a new inverse normal matrix update algorithm based on observation classification, respectively. To compare the performance of two algorithms in terms of the accuracy and processing time, we applied these algorithms to simulated airborne multi-sensory data. The experimental results indicate that the inverse normal matrix update algorithm shows 40 % higher accuracy in the estimated ground point coordinates and eight times faster processing speed comparing to the Given transformation update algorithm. Therefore, the inverse normal matrix update algorithm is more appropriate for the real-time image georeferencing.

A Study on Bundle Block Adjustment with Additional Parameters (부가매개변수(附加媒介變數)를 고려(考慮)한 번들블럭조정(調整)에 관(關)한 연구(硏究))

  • Yeu, Bock Mo;Kwon, Hyon;Lee, Hyun Jik;Jeong, Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.87-94
    • /
    • 1990
  • In this study, the block adjustments are perfomed by bundle adjustment method of analytical photogrammetry, and the characteristics of 3-dimensional errors for the objects are analysed. The optimal arrangement and configuration of the control points is selected from various arrangements and configurations of control points, and the accuracies of result obtained by block adjustment and by single model adjustment are compared, And the accuracy of bundle block adjustment is compared with that of the independent model triangulation which is another method in block adjustment with additional parameters by selecting the suitable systematic error model. As a result of this study, an the effective method to improve accuracy in close-range photogrammetry was presented by forming blocks and using bundle block adjustment with proper arrangement and configuration of control poinst.

  • PDF