• Title/Summary/Keyword: 지상장비 파라미터 측정시스템

Search Result 2, Processing Time 0.017 seconds

Temperature and Pressure Measurement on the Flame Deflector during KSLV-I Flight Tests (나로호 비행시험을 통한 화염유도로의 온도 및 압력 측정)

  • Jung, Il-Hyung;Moon, Kyung-Rok;Kang, Sun-Il;An, Jae-Chel;Ra, Seung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.378-384
    • /
    • 2011
  • During the flight test of KSLV-I, various sensors are installed in the launch pad and the flame deflector to measure the flame characteristics and their influences on the launch complex when a launch vehicle lifts off. Parameter Measurement System is responsible for acquiring the above flight test data. The measurement methodology such as the configuration of measurement system, sensor locations and data acquisition procedures are presented. And this paper compares and explains the characteristics of data sets measured during two flight tests.

Aircraft Load Monitoring System Development & Application to Ground Tests Using Optical Fiber Sensors (광섬유 센서를 사용한 항공기용 하중 모니터링 시스템 개발과 지상시험 적용)

  • Park, Chan Yik;Ha, Jae Seok;Kim, Sang Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.639-646
    • /
    • 2017
  • In this paper, a new load monitoring system for military aircraft is introduced. This system consists of sensors, an onboard device and an ground analysis equipment. The sensors and onboard device are mounted on the aircraft and the ground analysis equipment is operated on the ground. Through this system, structural static load can be estimated with flight parameters and structural responses can be measured by sensors due to static load, dynamic load and unexpected events. Especially, optical fiber sensors with mutiplexing capability are utilized. The onboard device was specially designed for complying the requirements of relevant military specifications and was verified through a series of the environment tests. This system was used and evaluated through ground structural tests before flight tests. In the near future, this system will be applied to military aircraft as a structural load monitoring system after flight test evaluation.