• Title/Summary/Keyword: 지붕경사각

Search Result 14, Processing Time 0.022 seconds

Effect of roof slope on the transmissivities of direct and diffuse solar radiation in multispan glasshouse by a computer simulation (컴퓨터 시뮬레이션에 의한 연동 유리온실내의 직달일사 및 산란일사 투과율에 미치는 지붕경사각의 영향)

  • 이석건;김용현
    • Journal of Bio-Environment Control
    • /
    • v.7 no.4
    • /
    • pp.324-329
    • /
    • 1998
  • Effect of roof slope on the transmissivities of direct and diffuse solar radiation using a computer simulation model developed by Kim and Lee(1997) was analyzed for 10-span glasshouse located in Seoul(37$^{\circ}$34' N), Chonju(35$^{\circ}$49' N) and Cheju(33$^{\circ}$31' N). Transmissivities of diffuse solar radiation in glasshouse with roof slopes of 15, 20, 24.6, 30 and 35 degree were calculated as 61.3, 61.6, 61.7, 56.8 and 58.6%, respectively. Transmissivities of direct solar radiation(TDSR) during the period except summer season were highly affected by the roof slope. During the winter season, TDSR in glasshouse with roof slopes of 30 and 35 degree were higher than those with other roof slopes. Also, during the period except winter season, TDSR in glasshouse with roof slope of 20 degree were higher than those with other roof slopes. Difference in TDSR with latitude was significant during the period from October to February. At this period TDSR were highly appeared at lower latitude. Effect of roof slope on TDSR in S-N greenhouse was smaller than those in E-W greenhouse. It is considered that direct solar radiation highly transmitted in the glasshouse with roof slope of 20 degree.

  • PDF

Effect of roof slope on the transmissivity of direct and diffuse solar radiation in multispan glasshouse by a computer simulation (컴퓨터 시뮬레이션에 의한 연동 유리온실내의 직달일사 및 산란일사 투과율에 미치는 지붕경사각의 영향)

  • 김용현;이석건
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.05a
    • /
    • pp.27-32
    • /
    • 1998
  • 국내에 보급되어 있는 유리온실은 네덜란드에서 수입된 벤로형(Venlo type or Dutchlite)과 벤로형에 비해서 동고가 높으며 온실 한 동의 폭이 상대적으로 큰 광폭형(widespan type)이 대부분을 차지하고 있다. 벤로형 은실의 측고는 3.5~4.0m로서 다소 차이가 있으나, 한 동의 폭과 지붕경사면의 길이가 일정하기 때문에 온실의 지붕경사각은 대부분 22$^{\circ}$를 나타낸다. (중략)

  • PDF

Characteristics of Peak External Pressure Acting on the Roof and Wall of the Low-Rise Buildings with Gable Roofs (박공지붕형 저층건축물의 지붕 및 벽면에 작용하는 피크외압의 분포 특성)

  • Jo, Won Geun;Won, Jong Ho;Ha, Young Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.245-255
    • /
    • 2009
  • The low-rise buildings with gable roofs are commonly used in a number of industries. In order to study the characteristics of peak external pressure coefficient on low-rise buildings with gable roofs, wind-tunnel test have been carried out. Wind-induced pressures were measured simultaneously at many points on wind-pressure models, typical of simple low-rise buildings with gable roofs, which have seven different roof slope with constant width(D), height(H), and length(D). The pressure measurements were made in one kind of turbulent boundary layer, which simulated the natural winds over typical suburban terrains at a geometric scale of 1/150. The results indicate that peak external pressure coefficient on the roof and wall edges were increased. The results compared with wind standard of KBC-2005 and standards of various nations. The comparative resultant, experimental result appeared very similar at AIJ-2004. But the results were somewhat larger then wind standard of KBC-2005.

Optimum Design of Greenhouse Roof Shape Using Genetic Algorithms - In Reference to Light Transmissivity - (유전알고리즘을 이용한 온실지붕 형상의 최적설계 - 광투과율을 중심으로 -)

  • 김문기;박우식
    • Journal of Bio-Environment Control
    • /
    • v.7 no.4
    • /
    • pp.290-297
    • /
    • 1998
  • In this study an optimization of greenhouse roof shape was performed to maximize solar light transmission which is one of the most important elements in greenhouse environment. To determine roof shape that maximize the total light transmissivity, a computer model for analysing light transmissivity was composed and the Genetic Algorithms was applied for solving optimization problems. By setting composite model as objective function(fitness function), the optimum combination of design variables(roof inclination angle, width ratio) was searched using Genetic Algorithms. The optimum combination of input variables for the maximum light transmissivity at Suwon in winter was found 40 degree root angle , 0.5 width ratio, for two span greenhouses and 37 $_。 / roof angle, 0.7 width ratio, for single span greenhouses.es.

  • PDF

A Simulation Model for the Analysis of Direct and Diffuse Solar Radiation in Glasshouse - Effect of orientation on the transmissivity of direct solar radiation in single- span glasshouse - (유리온실내의 직달일사 또 산란일사 해석을 위한 시뮬레이션 모형 - 동방위가 단동 온실내의 직달일사 투과율에 미치는 영향 -)

  • 김용현;이석건
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.176-182
    • /
    • 1997
  • A simulation model for the analysis of the transmissivity of direct and diffuse solar radiation In glasshouse was developed. This model would be applicable to investigate the influences of time of year, orientation and slope of glasshouse, dimensions of the frames used, and latitude of the site on the transmissivity of direct and diffuse solar radiation in single-span or multispan glasshouse. The transmissivity of diffuse solar radiation was 60.4% for the single-span glass-house. It was independent of both orientation and time of year, During the winter season, the transmissivity of direct solar radiation was 67~69% for the E-W orientation single-span glasshouse, which was 14~16% higher than that for the S-N orientation. Oppositely the transmissivity of direct solar radiation for the S-N orientation was higher than that for the E-W orientation. during the autumn season. There was no influence of the latitude In the country on the transmissivity of direct solar radiation.

  • PDF

Comparison Researches for Installation of the Module Angles and Array Spacing on Photovoltaic Power System (태양광 발전시스템에서 모듈 설치 각도와 어레이 간격의 비교 연구)

  • Choi, Dong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.162-168
    • /
    • 2009
  • This thesis is based on the research and experiment of the optimal efficiency generation of electric power. The research and experiment were conducted to search the optimal generation of electric power from a specific amount of solar energy from Photovoltaic Power System with a solar position tracker were used. The changes in the array angles and spacing of the PV Module were also taken into account as well. Here are the findings and the conclusions. First of all, based on experiment using the various anglers, the efficiency generation of electric power increased to a maximum of approximately $12{\sim}17$[%] more at the PV module inclination angle of 30[$^{\circ}$] than at the inclination angles of 20[$^{\circ}$] and 40[$^{\circ}$]. As a result, we have found that installing the PV module inclination at the angle of 30[$^{\circ}$] brought about the most efficient conversion effect of the Photovoltaic Power System. But, when the solar cell is installed on a roof or rooftop where snow builds up, it is the most appropriate to install the solar energy at an 35[$^{\circ}$] angle so that snow slides down and not build up on the module.

Effects of frame ratio and length on the transmissivity of solar radiation in glasshouse by a computer simulation (컴퓨터 시뮬레이션에 의한 유리온실내의 일사 투과율에 미치는 골조율 및 동길이의 영향)

  • 김용현;이석건
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1998.10a
    • /
    • pp.55-62
    • /
    • 1998
  • 온실내에서 직달 및 산란일사의 투과율은 온실이 설치된 지역의 위도, 온실의 동방위 및 형상, 피복재의 광학적 특성, 년중일수, 기상 조건, 지붕면의 경사각 뿐만 아니라 온실의 길이, 구조물의 크기 등에 따라 달라질 수 있다. 현재 국내의 기상 조건에 적합한 표준형 유리온실의 설계 기준이 부분적으로 제시되고 있으나, 온실내의 광환경과 관련된 설계 기준은 제시되지 않고 있는 실정이다. (중략)

  • PDF

A simulation model for the analysis of direct and diffuse solar radiation in glasshouse - Effect of orientation on the transmissivity of direct solar radiation in glasshouse - (유리온실내의 직달일사 및 산란일사 해석을 위한 시뮬레이션 모형 개발 - 동방위가 온실내의 직달일사 투과도에 미치는 영향 -)

  • 김용현;이석건
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1997.11a
    • /
    • pp.1-7
    • /
    • 1997
  • 온실이란 식물 생육에 요구되는 태양광을 유용하게 활용하기 위하여 투명한 피복재가 사용된 구조물을 일컫는다. 온실내로 투과되는 일사량은 온실이 설치된 지역의 위도, 온실의 동방위 및 형상, 구조물의 재원, 피복재의 광학적 특성, 년중일수, 기상 조건, 지붕면의 경사각 등에 따라 변화된다. 일반적으로 겨울철에 온실내의 일사량은 식물의 정상적인 생육에 제약이 되는 요소로 작용한다. (중략)

  • PDF

Solar Access and Shading Analysis of Traditional Building Using a Solar Trajectory Meter (태양 궤적 측정기를 이용한 전통 건축물 음영 분석)

  • Kim, Myoung Nam;Park, Ji Hee
    • Journal of Conservation Science
    • /
    • v.37 no.2
    • /
    • pp.90-100
    • /
    • 2021
  • Outdoor cultural buildings and their accessories receive different amounts of solar radiation depending on their location's latitude, azimuth, and tilt. Shading is also affected by the surrounding terrain and objects, necessitating individual and quantitative shading analysis. In July 2019, this study conducted a shading analysis on the tops, midpoints, and bottoms of wooden pillars in the azimuth of Cheongpunggak, a traditional building in South Korea's National Research Institute of Cultural Heritage. The shading analysis found that the solar access/shade predicted by the solar trajectory meter was 30 minutes slower than measured in the field. The highest solar access and solar radiation levels came from the south, followed by the west, east, and north. The pillars' bases received the highest solar access and solar radiation, followed by their midpoints and tops. Solar access was high at tilt 90°, but solar radiation was high at tilt 0°, due to the light-collection efficiency and the irradiance. Shading on the pillars' tops was caused by the roof eaves, while shading on the midpoints and bases were affected by the surrounding pillars, topography, and other objects. Simultaneous solar access at the tops, midpoints, and bottoms was possible for 365 days for the northwest, west, and southwest pillars but only from October to March for the south and southeast pillars.