• Title/Summary/Keyword: 지보

Search Result 615, Processing Time 0.019 seconds

Study on the Effect of the Bearing Capacity Support of tunnel by Steel Rib in the Colluvial Soils (붕적층 지반에 적용된 터널에서 강재의 지보효과에 대한 연구)

  • Ahn, Sung-Youll;Lee, Jae-Young;Ahn, Kyung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.31-40
    • /
    • 2006
  • The entrance and the exit structures of tunnels are often constructed on unfavorably soft soils (colluvial soils) as a result of environment-friendly design highlighted in recent years. For construction of such a tunnel, it is essential to secure sufficient bearing capacity of the lining supports as well as that of the surrounding soils. In this regard, H-shape steel-ribs with high stiffness are commonly used for lining supports. However, it was the past convention to ignore the effect of the steel-ribs in numerical evaluation of the structural safety. This study is intended to show how the shotcrete stresses are relieved by the steelribs, on the basis of numerical data obtained from 3-dimensional finite element analysis. The effect of steel ribs to shotcrete stresses is examined at different levels of application rates, i.e., 0%, 50%, 75% and 100% of the total stiffness. The data obtained from numerical analysis was compared with in-situ measurement. The effect of st eel ribs to shotcrete stresses was verified and appropriate total stiffness was proposed in the range of 50%~75%.

  • PDF

Rock Support Design of Bakun Tunnelling Project in Sarawak, Malaysia (바쿤 가배수로 터널의 최적지보설계)

  • 지왕률
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.296-306
    • /
    • 1998
  • Ongoing huge Bakun Hydropower project is including the construction of a 210 m height hydroelectric rockfill dam with an installed capacity of 2,520 MW and a power transmission system connecting to the existing networks between Sarawak and peninsula Malaysia. In order to allow the main dam construction during the dry season, the Ballui river will have to be detoured through 3 concrete lined diversion tunnels with an internal diameter of 12 m and a length of 1,400 m each. The geology of Bakun site belongs to the several thousand meters thick Belaga formation deposited from the late Cteteceous to the early Teriary in the Northwest Borneo geosyncline. The orientation of the bedding plane, strike at N55$^{\circ}$E to N70$^{\circ}$E and dip at 50$^{\circ}$SE to 70$^{\circ}$SE, is developed uniformly in Bakun sedimentary rocks. Rock mechanical characteristics of Bakun site have been classified into 4 rock mass types(RMT) depending on the degree of weathering and the occurrence of rock jointing with RMR. Graywacke(Sandstone) as well as Shale can take place together in the same rock mass type if their rock mass properties are similar. It was summarized the rock support type and support system design of underground diversion tunnels in view of rock mechanics.

  • PDF

The Value and Agenda on Seal of Joseon Royal Family Retrieved from USA (미국에서 환수한 조선왕실 인장문화재의 가치와 과제)

  • Seong, In-keun
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.4
    • /
    • pp.192-209
    • /
    • 2014
  • The important national cultural heritages were retrieved. April 25 2014, US President Barack Obama formally returned 9 Seals of Joseon Dynasty and Korean Empire in Korea-US Summit taken place in Cheong Wa Dae. These Seals were taken out of Deoksugung illegally by a US Marine Corps officer during Korean War, handed down to his posterity, and last November 2013 confiscated by HSI in San Diego. Through investigations above facts turned out and it was decided to return these relics to Koera. In the process of surveying these seals, I confimed the authenticity of them and transferred my opinion to Cultural Heritage Administration. In this paper, I try to summarize the historical value of each Seals and suggest the remaining task.

Stability evaluation of room-and-pillar underground method by 3D numerical analysis model (3차원 수치해석모델을 이용한 주방식 지하공간의 안정성 평가)

  • Byung-Yun, Kang;Sanghyuk, Bang;Choong-Ky, Roh;Dongkwan, Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • In this study, the stability of the room-and-pillar underground method was investigated using numerical analysis method. In-situ geotechnical investigation was conducted, and a supporting pattern was selected based on the geotechnical investigation data. For the supporting pattern, Type-1, 2, 3 were selected for each ground condition. A 3D numerical analysis model was developed for effective simulation as the room-and-pillar underground method consist of a pillar and room. As a review of numerical analysis, it was confirmed that the crown settlement, convergence, shotcrete and rock bolt were all stable in all supporting patterns. As a result of the analysis by the construction stage, it was confirmed that excessive stress was generated in the room when the construction stage of forming pillar. So, precise construction is required during the actual construction stage of the pillar formation.

A Study on Concrete Lining Stress Changes Considering Load Supporting Capacity of Primary Supports of NATM Tunnel (NATM 터널에서 1차지보재의 지보압을 고려한 콘크리트라이닝 응력변화에 관한 연구)

  • Jeon, Sang Hyun;Shin, Young Wan;Yoo, Han Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.147-154
    • /
    • 2011
  • Currently NATM tunnels are designed by applying the initial ground loads caused during construction to the primary supports, conisting of shotcrete, steel ribs and rock bolts. For long term considerations, it is assumed that the primary supports lose its functionality and therefore the secondary support, i.e. concrete lining, is design to resist against the entire ground loads. But the steel ribs, usually applied to bad ground conditions, are embedded in shotcrete causing very little corrosion and therefore the assumption that the primary support will lose all of its functionality is too conservative. Also even though shotcrete carbonates in long term, excluding it from design is also too conservative. In this study, we have, through analytical and numerical analysis, set a rational level of support pressure and allowable relaxed rock mass height sustainable by the primary support for long term design. Changes in sectional forces of the concrete lining considering the calculated support pressure of the primary supports was also carried out. Shallow subway tunnels were considered in the analysis with weathered rock and soft rock ground conditions. The analysis results showed that, by considering the support pressure of steel ribs, an economical design of the concrete lining is possible.

Optimization of tunnel support patterns using DEA (차분진화 알고리즘을 적용한 터널 지보패턴 최적화)

  • Kang, Kyung-Nam;An, Joon-Sang;Kim, Byung-Chan;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.211-224
    • /
    • 2018
  • It is important to design tunnel support system considering the various loads acting on the tunnel because they have a direct impact on the stability of tunnels. In Korea, standardized support patterns are defined based on the rock mass classification system depending on the project, and it is stated that it should be modified appropriately considering the behavior of tunnel during construction. In this study, the tunnel support pattern optimization method is suggested based on the convergence-confinement method, earth pressure, axial force of rock bolt, and moment acting on the shotcrete. The length and spacing of the rock bolts and the thickness of the shotcrete were optimized by using the differential evolution algorithm (DEA) and the results were compared to the standard support pattern III for railway tunnel. Rock bolt length can be reduced and the installation interval can be widened for shallow tunnel. As the depth of tunnel increases, the thickness of shotcrete increases linearly. Therefore, the thickness of shotcrete should be thicker than the standard support pattern as the depth of tunnel increases to secure the stability of tunnel.

A Study on the Characteristics of Tunnel Based on the Rock Mass Classification (암반분류법에 근거한 터널 특성 연구)

  • Lee Song;Ahn Tae-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.19-25
    • /
    • 2005
  • A tunnel that uses the RMR method or the Q-system is called a 'modem tunnel' because the New Austrian Tunneling Method (NATM) is not employed, even though shotcrete and rock bolts are used as support. It is known that the modem tunnel, which is supported by shotcrete, is basically different from the conventional tunnel, which is supported by steel ribs. In order to preserve the load-carrying capacity of the rock mass, loosening and excessive rock deformations must be minimized. Although it is known that this can be achieved by applying shotcrete in the case of the modem tunnel, this has not been clearly demonstrated. In order to inspect the distinctions between the conventional tunnel and the modern tunnel, their support characteristics and the rock loads of the rock mass classifications are compared. Terzaghi's rock load classification was used as the conventional tunnel's representative rock mass classification. The RMR method and the Q-system were adopted as the modem tunnel's representative rock mass classification. The study's results show that the load-carrying capacity of shotcrete, when used as the main support in the modern tunnel, is greater than the load-capacity of the steel ribs used in the conventional tunnel. Because it has been verified that the rock loads of their rock mass classifications are not different, then, according to the rock mass classifications, the load-carrying capacity of the rock mass of the modern tunnel, which uses shotcrete, is not greater than that of the conventional tunnel.

Numerical Study on the Behavior of Fully Grouted Rock Bolts with Different Boundary Conditions (경계조건의 변화에 따른 전면접착형 록볼트 거동의 수치해석적 연구)

  • Lee, Youn-Kyou;Song, Won-Kyong;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.267-276
    • /
    • 2010
  • In modern rock engineering practice, fully grouted rock bolting is actively employed as a major supporting system, so that understanding the behavior of fully grouted rock bolts is essential for the precise design of rock bolting. Despite its importance, the supporting mechanism of rock bolts has not been fully understood yet. Since most of existing analytical models for rock bolts were developed by drastically simplifying their boundary conditions, they are not suitable for the bolts of in-situ condition. In this study, 3-D elastic FE analysis of fully grouted rock bolts has been conducted to provide insight into the supporting mechanism of the bolt. The distribution of shear and axial stresses along the bolt are investigated with the consideration of different boundary conditions including three different displacement boundary conditions at the bolt head, the presence of intersecting rock joints, and the variation of elastic modulus of adjacent rock. The numerical result reveals that installation of the faceplate at the bolt head plays an important role in mobilizing the supporting action and enhancing the supporting capabilities of the fully grouted rock bolts.

A Study on the Reasonable Application Method of Steel Fiber Reinforced Shotcrete in NATM Tunnel (NATM 터널에서 합리적인 강섬유보강 숏크리트 적용방안에 관한 연구)

  • Seok, Chongken;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.19-28
    • /
    • 2014
  • Recently, the proportion of long tunnel has increased for efficient use of land due to limited land area, driving convenience and high speed. RMR and Q-System of empirical methods has been mainly used for tunnel support design in domestic. Although shotcrete is the key to NATM tunnel, the related studies are insufficient. So, steel fiber reinforced shotcrete is applied to II~V grade rocks on domestic and foreign applications. And same amount of shotcrete is equally applied to tunnel roof and wall regardless of the applied rock load. Shotcrete is applied excessively rather than the original proposed value of RMR and Q-System. Thus, this study is to reevaluate the application part of plain shotcrete and steel fiber reinforced shotcrete of tunnel in Daebo granite, and to propose the reasonable application method of steel fiber reinforced shotcrete. Field test and numerical back analysis using measurements were performed to verify stability. According to results, if RMR values are the upper class in the III grade, it can be designed in accordance with upper grade. In addition, if rock condition is good as a mountain tunnel in Daebo granite, it can be applied for plain shotcrete to III grade rocks because there is also no stability problems. And although steel fiber reinforced shotcrete is applied only crown of the tunnel in IV grade rocks, it is possible to secure stability for falling rock by key-block.

Flexural Behavior of Reinforced Ribs of Shotcrete for Various Configurations of Reinforcements (철근배근형태에 따른 철근보강 숏크리트의 휨파괴 거동특성 연구)

  • Park, Yeon-Jun;Lee, Jung-Ki;Noh, Bong-Kun;You, Kwang-Ho;Lee, Sang-Don
    • Tunnel and Underground Space
    • /
    • v.20 no.3
    • /
    • pp.169-182
    • /
    • 2010
  • H-beam and lattice-girder are the two most commonly used steel supports in domestic tunnels. Reinforced Ribs of Shotcrete(R.R.S.), which is frequently used in Scandinavian countries, is yet to be employed in Korea despite its advantages over H-beam or lattice girder in terms of economy and constructional efficiency. In this study, laboratory tests were conducted to determine the most suitable design of R.R.S in domestic tunnels. Various configuration of steel reinforcements including double layer of steel rebars were tested and compared. Reinforcement with H-beam and lattice girder were also analyzed. Results of this study can be of great use in selecting and designing of tunnel supports when the tunnel is excavated by NATM or Norwegian Method of Tunnelling(NMT).