• Title/Summary/Keyword: 지반 조건

Search Result 2,286, Processing Time 0.027 seconds

Evaluation of Dynamic p-y Curve Based on the Numerical Analysis (수치해석기반의 동적 p-y 곡선 산정)

  • Park, Jeong-Sik;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.59-73
    • /
    • 2017
  • Numerical analysis using 3D finite element program (PLAXIS 3D) evaluated the interaction of soil - pile structure under dynamic surface loading. The dynamic p-y curve of the 1-g shaking table experiment by numerical analysis was calculated, and the parametric studies were presented by considering the pile-soil condition, the pile tip condition, and the loading condition. The frequency of 1.4 Hz is almost equal to the natural frequency of the pile - soil system. The p and y values of resonance phenomenon are significantly different from the results of other frequencies. The results can be summarized by a third order polynomial function representing the trend line in the p-y curve. In the case of a single pile, the shape of the dominant curve was found to be an ellipse by mathematical proof. The elliptic equation can be used for the dynamic design or analysis of soil-pile system.

Numerical Study of Thermo-hydraulic Boundary Condition for Surface Energy Balance (지표면 열평형의 열-수리적 경계조건에 대한 수치해석)

  • Shin, Hosung;Jeoung, Jae-Hyeung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.25-31
    • /
    • 2021
  • Boundary conditions for thermal-hydraulic problems of soils play an essential role in the numerical accuracy. This study presents a boundary condition considering the thermo-hydraulic interaction between the ground and the atmosphere. Ground surface energy balance consists of solar radiation, ground radiation, wind convection, latent heat from water evaporation, and heat conduction to the ground. Equations for each heat flux are presented, and numerical analyses are performed in conjunction with the FEM program for the thermal-hydraulic phenomenon of unsaturated soils. Numerical results using the weather data at the Ulsan Meteorological Observatory are similar to the measured surface temperature. Latent heat caused by water evaporation during the daytime lowers the surface temperature of the bare soil, and a thermal equilibrium is reached at nighttime when the effect of the ground condition is significantly reduced. The temperature change of the surface ground is diminished at the deeper ground due to its thermal diffusion. Numerical analysis where the surface ground temperature is the primary concern requires considering the thermo-hydraulic interaction between the ground and the atmosphere.

Investigation on Support Mechanism of Geogrid-Encased Stone Columns in Soft Ground (연약지반에 시공되는 지오그리드 감쌈 스톤컬럼의 하중 지지 메카니즘에 관한 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.93-101
    • /
    • 2008
  • This paper presents the results of numerical investigation on support mechanism of geogrid-encased stone columns for use in soft ground improvement. A number of cases were analyzed using a 3D stress-pore pressure coupled model that can effectively model construction sequence and drainage as well as reinforcing effects of geogrid-encased stone columns. The results indicated that the geogrid encasement provides additional confinement effect that reduces vertical stress in the soft ground, thus resulting in less excess pore water pressures and associated settlement. Also revealed was that such a confinement effect depends on encasement length and stiffness of geogrid. It is also shown that there exist critical encasement length and stiffness of geogrid for a given condition.

The Permeability Characteristic of Z-Type Sheet Pile Joints under Water Sealing Conditions (지수조건에 따른 Z형 강널말뚝 연결부의 투수특성)

  • Chung, Ha-Ik;Lee, Yong-Soo;Hong, Seung-Seo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • In general steel sheet piles are used in the containment system, which are vertical barrier systems for waste disposal and landfill purposes, and roads in excavation for temporary structure. This paper presents case study of the use of an interlocking sheet pile for water and containment. Cut-off Z-type sheet pile joints are investigated to determine their permeability from the field test. Four different joint sealing materials are used in field test. The results showed joint permeability is significant time-dependent and joint-dependent. These are explored and conclusions on permeability characteristics of different sealants are noted. A case study gives a design example as well as suggestion on permeability and water tightness can be implemented in using the sheet pile barrier in civil and environment works. From the test results, the effective sealing programs of sheet pile interlocks are suggested.

  • PDF

Numerical Analysis and Comparison of the Influence of Safety Factor Variations in Slope Stability During Rainy Season (우기시 비탈면 안전율 변화 인자의 영향에 대한 수치해석적 비교연구)

  • Song, Pyung-Hyun;Baek, Yong;You, Byung-Ok;Hwang, Young-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.45-54
    • /
    • 2014
  • Many studies have been made on investigation, design, explanation and treatments etc. to minimize slope failure. However, the problem is that failures of cutting slope and natural slope due to Typhoon and localized heavy rainfall are still not reduced. It is difficult to treat the problem by only strengthening the design standard. And it is very necessary to carry out design and safety analysis under the most suitable conditions considering foundation and rainfall characteristics. In this study, variations of safety factor were discussed from different aspects to investigate the influence of different parameters of rainfall and analysis conditions. Rainfall and foundation conditions are supposed to be the most sensitive parameters to slope stability, and numerical analysis were performed by changing parameters of the two conditions. Rainfall behavior is based on the domestic statistical rainfall and foundation condition is selected as unsaturated soils. Study results show that, application of rainfall characteristics in different area and parameters of unsaturated soils are responding sensitively to variations of slope safety. Therefore, the input parameters should be fully examined when performing the practical design.

A Study on the Hardening Characteristics of Ground Injection Grout under Various Curing Conditions (다양한 양생조건에서 지반주입 그라우트의 경화특성에 대한 연구)

  • Heo, Hyungseok;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.11
    • /
    • pp.11-20
    • /
    • 2020
  • For water barrier and reinforcing grout in soft ground, the verification of durability was conducted over the initial and long-term ages under various curing conditions. The grout was made of water glass system, fast-hardening mineral (FHM) system, and acrylic polymer system. There were three types of curing conditions that were tab water curing, artificial seawater curing, and atmospheric curing. And the various tests were performed for each sample by age, uniaxial compressive strength, length change, and weight change. As artificial seawater, MgCl2 and MgSO4 aqueous solutions were prepared and used, respectively. As the test results, the fast-hardening mineral system and acrylic polymer system were cured stably without significant change in durability in tap water and artificial sea water, whereas water glass system showed a very rapid drop in durability under artificial sea water conditions compared to tap water. In atmospheric curing conditions, durability is lowered compared to water curing in all cases, and in particular, the weight loss in the FHM system and water glass system is about 62% and 60%, respectively, resulting in a significant decrease in durability.

Evaluation of Site Specific Ground Response (부지 고유의 지반 거동평가)

  • 김동수;이진선;윤종구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.1-10
    • /
    • 1999
  • Free-field ground motion during earthquake is significantly affected by the local site conditions and it is essential for the seismic design to perform the site specific ground response analysis. In this paper, the procedures of site specific ground response analysis were suggested based on the Korean seismic guideline and the review of state of the art technologies. The concept of ground response analysis was introduced, and the techniques of obtaining soil data for one dimensional equivalent linear analysis which include site investigation planning, field and laboratory testing techniques, deformational characteristics of soils at small to large strains, and site characterization techniques combining field and laboratory test results, were suggested. Finally, the case study was performed at Inchon area following the suggested procedure.

  • PDF

A Study on the p-y Curves by Small-Scale Model Tests (모형실험을 통한 말뚝의 p-y 곡선에 관한 연구)

  • Kim, Tae-Sik;Jeong, Sang-Seom;Kim, Young-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1C
    • /
    • pp.41-51
    • /
    • 2008
  • The load distribution and deformation of single piles which is embedded in Jumunjin sand and Kimhae clay are investigated, based on small scale model tests. Special attention is given to the consideration of flexural rigidity in laterally loaded piles. To consider the flexural rigidity of the pile, tests are performed with the aluminium piles of three different length under different relative densities and undrained shear strength. The test results indicate that the initial slope from the results of tests is proportional to the depth and pile-soil rigidity in both soils. But the increasing rate of the initial slope in the clay is less than in the sand. In addition, the soil resistance is more related to the depth and soil condition than the pile rigidity. Base on the test results, an empirical formula is proposed, which is good agreement with previously published small scale model test and field lateral load test.

Effect of Ground Boundary Condition on Evaluation of Blast Resistance Performance of Precast Arch Structures (지반경계조건이 프리캐스트 아치구조물의 폭발저항성능 평가에 미치는 영향)

  • Lee, Jungwhee;Choi, Keunki;Kim, Dongseok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.287-296
    • /
    • 2019
  • In this study, the effect of ground boundary conditions on the evaluation of blast resistance performance of precast arch structures was evaluated by a numerical analysis method. Two types of boundary conditions, namely, fixed boundary conditions and a perfectly matched layer (PML) were applied to numerical models. Blast loads that were much higher than the design load of the target structure were applied to compare the effects of the boundary conditions. The distribution and path of the ground explosion pressure, structural displacement, fracture of concrete, stress of concrete, and reinforcing bars were compared according to the ground boundary condition settings. As a result, the reflecting pressure shock wave at the ground boundaries could be effectively eliminated using PML elements; furthermore, the displacement of the foundation was reduced. However, no distinct difference could be observed in the overall structural behavior including the fracture and stress of the concrete and rebar. Therefore, when blast simulations are performed in the design of protective structures, it is rational to apply the fixed boundary condition on the ground boundaries as conservative design results can be achieved with relatively short computation times.