• Title/Summary/Keyword: 지반 조건

Search Result 2,303, Processing Time 0.03 seconds

The Strength Characteristics of Deep Mixing Ground According to Increasing Water Contents (함수비 증가에 따른 심층혼합지반의 강도특성)

  • Park, Choon-Sik;Choi, Jun-Sam
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.3
    • /
    • pp.25-35
    • /
    • 2019
  • A laboratory test on uniaxial compressive strength was carried out by making 640 specimens in total, which were divided into two groups by their curing time of 7 and 28 days for 3 water content conditions of a water content at 100% saturation level and 10% and 20% increased water content from the state with clay, sand and gravel mixed grounds of 20 ground conditions of 4 types of stabilizer mixing conditions which were 8%, 10%, 12%, 14%, to understand laboratory strength characteristics for strength design of deep mixing ground. In case of clayey grounds, although the strength increased depending on the increase of stabilizer content, it showed to be analogous regardless of the curing time. And the impact on the strength development of deep mixing specimen according to water content was considered to be comparatively little compared to other grounds. For sandy grounds, the strength increment amount clearly showed to increase as stabilizer content increased, and also the increase of water content was determined to be decreasing the strength increment effect. For gravel mixed grounds, at 14% or over of stabilizer content, the effect on strength development was big making a large increase in strength, but compared to sandy grounds, the strength ratio depending on the curing time showed to be small.

Dynamic Numerical Modeling of Subsea Railway Tunnel Based on Geotechnical Conditions and Seismic Waves (지반조건과 지진파를 고려한 해저철도 터널의 동적 수치 모델링)

  • Kwak, Chang-Won;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.69-86
    • /
    • 2022
  • The railway is widely used to transport passengers and freight due to its punctuality and large transport capacity. The recent remarkable development in construction technology enables various subsea railway tunnels for continent-continent or continent-island connectivity. In Korea, design and construction experience is primarily based on the successful completion of the Boryeong subsea tunnel (2021) and the Gadeok subsea tunnel (2010). However, frequent earthquakes with diverse magnitudes, globally induced and continuously increased the awareness of seismic risks and the frequency of domestic earthquakes. The effect of an earthquake on the subsea tunnel is very complicated. However, ground conditions and seismic waves are considered the main factors. This study simulated four ground types of 3-dimensional numerical models, such as soil, rock, composite, and fractured zone, to analyze the effect of ground type and seismic wave. A virtual subsea railway shield tunnel considering external water pressure was modeled. Further, three different seismic waves with long-term, short-term, and both periods were studied. The dynamic analyses by finite difference method were performed to investigate the displacement and stress characteristics. Consequently, the long-term period wave exhibited a predominant lateral displacement response in soil and the short-term period wave in rock. The artificial wave, which had both periodic characteristics, demonstrated predominant in the fractured zone. The effect of an earthquake is more noticeable in the stress of the tunnel segment than in displacement because of confining effect of ground and structural elements in the shield tunnel. 

Numerical Analysis for Dynamic Behavioral Characteristics of Submerged Floating Tunnel according to Shore Connection Designs (지반 접속부 설계에 따른 수중터널의 동적 거동 특성에 대한 수치해석적 연구)

  • Seok-Jun, Kang;Joohyun, Park;Gye-Chun, Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Submerged floating tunnels must be connected to the ground to connect continents. The displacement imbalance at the shore connection between the underground bored tunnel and submerged floating tunnel can cause stress concentration, accompanying a fracture at the shore connection. The elastic joint has been proposed as a method to relive the stress concentration, however, the effect of the elastic joints on the dynamic behavior should be evaluated. In this study, the submerged floating tunnel and shore connection under dynamic load conditions were simulated through numerical analysis using a numerical model verified through a small-scaled physical model test. The resonant frequency was considered as a dynamic behavioral characteristic of the tunnel under the impact load, and it was confirmed that the stiffness of the elastic joint and the resonant frequency exhibit a power function relationship. When the shore connection is designed with a soft joint, the resonant frequency of the tunnel is reduced, which not only increases the risk of resonance in the marine environment where a dynamic load of low frequency is applied, but also greatly increases the maximum velocity of tunnel when resonance occurs.

Dynamic p-y Backbone Curves for a Pile in Saturated Sand (포화 사질토 지반에서의 동적 p-y 중추곡선)

  • Yang, Eui-Kyu;Yoo, Min-Taek;Kim, Hyun-Uk;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.27-38
    • /
    • 2009
  • In this study, a series of 1 g shaking table model pile tests were carried out in saturated dense and loose sand to evaluate dynamic p-y curves for various conditions of flexural stiffness of a pile shaft, acceleration frequency and acceleration amplitude for input loads. Dynamic p-y backbone curve which can be applied to pseudo static analysis for saturated dense sand was proposed as a hyperbolic function by connecting the peak points of the experimental p-y curves, which corresponded to maximum soil resistances. In order to represent the backbone curve numerically, empirical equations were developed for the initial stiffness ($k_{ini}$) and the ultimate capacity ($p_u$) of soils as a function of a friction angle and a confining stress. The applicability of a p-y backbone curve was evaluated based on the centrifuge test results of other researchers cited in literature, and this suggested backbone curve was also compared with the currently available p-y curves. And also, the scaling factor ($S_F$) to account for the degradation of soil resistance according to the excess pore pressure was developed from the results of saturated loose sand.

Verification of 2-Parameters Site Classification System and Site Coefficients (II) - Earthquake Records in Korea (2-매개변수 지반분류 방법 및 지반 증폭계수의 검증 (II) - 국내 실지진 기록을 통한 검증)

  • Lee, Sei-Hyun;Park, Dong-Hee;Ha, Jeong-Gon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.35-43
    • /
    • 2012
  • Following the companion paper (I. Comparisons with Well-known Seismic Code and Site Response Characteristics), several acceleration data recorded during recent earthquake events in Korea were analyzed to verify the suitability of the proposed two-parameters site classification system and the corresponding site coefficients. For all of rock-soil site pairs less than 30 km distant, response spectrums and corresponding site coefficients, $F_a$ and $F_v$, were determined. Unfortunately, some of data have an eccentric error, where the spectral acceleration of rock site is more amplified than that of soil site. The $F_a$ and $F_v$ for all of pairs except the pairs of error were compared with those in the current code and the proposed system. The $F_a$ and $F_v$ from the recorded motions show definitely different trend from that of the current code. In addition, the site coefficients from recorded motions at four 765 kV substation sites, which are several hundred meters distant, have a remarkably similar trend and absolute values to those in proposed two-parameters site classification system. Based on earthquake motions recorded in domestic areas including data from the four 765 kV substation sites, the two-parameters site classification and site coefficients are superior to the results obtained from the current Korean seismic code.

Ground Subsidence Risk Ratings for Pre-excavation (굴착 전 지반함몰 예측을 위한 위험등급 분류)

  • Ihm, Myeong-Hyek;Shin, Sang-Sik;Kim, Woo-Seok;Kim, Hak Joon
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.553-563
    • /
    • 2018
  • The recent increase of ground subsidence in Korea requires the development of technology for predicting the possibility of ground subsidence. Eighteen parameters affecting the ground subsidence for pre-excavation are classified into 6 categories considering ground types, groundwater, and external factors. Eighteen parameters consists of a table which gives ground subsidence risk ratings for pre-excavation(GSRp). Certain scores are given to these parameters after they are divided into several classes considering the importance and the credibility of parameters and the engineering judgements of the authors. Because of the difference of ground subsidence factors depending on the ground and field conditions, weighting factors for the individual factor and for the each category are multiplied. Weighting factors are calculated from citation frequencies of influencing factors. Ground subsidence risk ratings for pre-excavation can be quantified by considering the individual score of each parameter and weighting factors for the individual factor and for the each category. The suggested GSRp tables obtained from this study are expected to be used by engineers for the estimation of ground subsidence risk ratings for pre-excavation sites.

Effects of Slope Location on the Boundary Condition in the 1g Shaking Table Test (1g 진동대시험에서 사면의 위치에 따른 경계조건 영향평가)

  • Jeong, Sugeun;Jin, Yong;Kim, Daeheyon
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.535-545
    • /
    • 2022
  • Improving the stability of the ground in seismic design requires an understanding of the dynamic behavior of the ground under seismic loads. The shaking table test is an important methodology to provide this understanding. This study aimed to assess the influence on boundary conditions, as they are among the most important factors affecting the test. This was achieved by testing the influence of boundary conditions on the seismic responses of model slopes at different locations in the testing apparatus. A model slope was fabricated at different locations in a laminar shear box, and the influence of the boundary conditions was then measured. Each model slope was created at 100, 50, and 25 cm from the soil wall, and sine wave seismic loads of the same size were inputted. The results confirmed that the acceleration was amplified by the influence of the boundary in the case of the slope being located 25 cm from the boundary, whereas the influence of the boundary conditions decreased when the slope was located at 50~100 cm.

Behavior of Geosynthetic Reinforced Modular Block Walls with Settlement of Foundation (기초지반의 침하가 계단식 보강토 옹벽의 거동에 미치는 영향)

  • Yoo, Chung-Sik;Jung, Hye-Young;Song, Ah-Ran
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.4
    • /
    • pp.13-21
    • /
    • 2005
  • This paper presents the results of an investigation on the effects of settlement of foundation on the behavior of geosynthetic-reinforced modular block walls in a tiered arrangement using the finite-element method of numerical analysis. A parametric study was performed by varing the foundation condition and offset distance between the tiers and reinforcement length of the lower and upper tier using varified finite-element model. The finite-element analysis provided relevant information on the mechanical behavior of the wall and interaction mechanism between the upper and lowers that was otherwise difficult to obtain from the limit-equilibrium analysis based current design approaches. Practical implications of the findings obtained from this study to current design approaches are discussed in great detail.

  • PDF

Effects of Freezing a Backfill Material under Undrained Condition on a Buried Pipe (포화 사질토 뒷채움재의 비배수 동결에 의한 매설 강관의 거동 - 실대형 모형실험 연구 -)

  • Kang, Jae-Mo;Lee, Jang-Guen;Kim, Hak-Seung;Lee, Sang-Yoon;Ryu, Byung-Hyun;Cho, Nam-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.8
    • /
    • pp.39-47
    • /
    • 2014
  • Frost heaving and thawing settlement cause unexpected stress around buried pipelines, which results in deformation and permanent demage. A large scale laboratory test has been performed to observe deformation, stress, and temperature of a buried pipe during atmospheric temperature changes. From the experimental results, the stress concentrated around the buried pipe is inevitable and deformation is caused by the frost heaving. Even though backfill materials are sandy soils which are normally assumed to be non frost susceptible, it is revealed that frost demage can happen due to drainage condition, the level of ground water table, and water content.

Development of Dynamic p-y Curve for Jacked Pile by Centrifuge Test (원심모형 실험을 이용한 압입말뚝에 대한 동적 p-y 곡선 산정)

  • Yoo, Min-Taek;Kwon, Sun-Yong;Lee, Il-Hwa
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.3
    • /
    • pp.39-47
    • /
    • 2016
  • In this study, dynamic centrifuge tests in dry sand were conducted in order to evaluate the effect of pile installation on the dynamic p-y curve. According to the result of the pile installation effect on the dynamic p-y backbone curves, the subgrade resistance of a jacked pile in 40 g was found to be greater than that of a jacked pile in 1 g and a preinstalled pile in 1 g. It was also found that differences of the subgrade resistance decrease with the depth of the pile. Applicability of dynamic p-y backbone curve for the bored pile proposed by preceded researcher was evaluated by comparing with the result of centrifuge tests. In addition, dynamic p-y backbone curve for jacking/driven pile was developed by modifying that for the bored pile.