• Title/Summary/Keyword: 지반 강성

Search Result 709, Processing Time 0.026 seconds

Development of Tomographic SASW Method to Evaluate Two-Dimensional Variability of Shear Stiffness (지반 및 구조물의 이차원적 전단강성 평가를 위한 토모그래픽 SASW 기법의 개발)

  • 조성호
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.29-42
    • /
    • 1999
  • The SASW (Spectral-Analysis-of-Surface-Waves) method, which evaluates the stiffness structure of the subsurface and structures nonintrusively and nondestructively, has been successfully used in the civil engineering applications. However, the SASW method assumes that the subsurface or structures consist of horizontal multi-layers, so that the method has some difficulty in continuously evaluating the integrity of a tunnel lining and a pavement system. This difficulty prevents the SASW method from being used to generate a tomographic image of stiffness for the subsurface or structures. Recently, the GPR technique which has the advantage of continuously evaluating integrity of the subsurface and structures has been popular. This advantage of GPR technique initiated the efforts to make the SASW method, which is superior to GPR and other nondestructive testing methods due to its capability of evaluating stiffness and modulus, be able to do continuous evaluation of stiffness structure, and the efforts finally lead to the development of \ulcornerTomographic SASW Technique.\ulcorner Tomographic SASW technique is a variation of the SASW method, and can generate a tomographic image of stiffness structure along the measurement line. The tomographic SASW technique was applied to the investigation of lateral variability of a sand box placed by the raining method for the purpose of verifying its effectiveness. Tomographic SASW measurements on the sand box revealed that the investigated sand box has different shear stiffness along the measurement line, which gave a clue of how to make a better raining device.

  • PDF

Real-Time Hybrid Shaking Table Test of a Soil-Structure Interaction System with Dynamic Soil Stiffness (동적 지반강성을 갖는 지반-구조물계의 실시간 하이브리드 진동대 실험)

  • Lee, Sung-Kyung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.217-225
    • /
    • 2007
  • This paper proposes the real-time hybrid shaking table testing methods to simulate the dynamic behavior of a soil-structure interaction system with dynamic soil stiffness by using only a structure model as the physical specimen and verifies their effectiveness for experimental implementation. Experimental methodologies proposed in this paper adopt such a way that absolute accelerations measured from the superstructure and shaking table are feedback to the shaking table controller, and then the shaking table is driven by the calculated motion of the absolute acceleration (acceleration feedback method) or the absolute velocity (velocity feedback method) of foundation that is required to simulate the dynamic behavior of a whole soil-structure interaction system. The shaking table test is implemented by reflecting the dynamic soil stiffness, which are differently approximated from the theoretical one depending on the feedback methods, on the shaking table controller to calculate soil part. The effectiveness of the proposed experimental methods is verified by comparing the response measured from the test on a foundation-fixed structural model and that obtained from the experiment of a soil-interaction system under the consideration in this paper and by matching the dynamic soil stiffness reflected on the shaking table controller with that identified using the experimentally measured data.

Stiffness Comparison of Non-plastic Silt due to Bender Element and Direct Simple Shear Test (벤더엘레먼트와 단순전단시험에 의한 비소성실트의 강성 비교)

  • Song, Byungwoong;Yasuhara, Kazuya;Sakamoto, Wataru;Lee, Jeawoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 2007
  • Recent investigations into earthquake-induced damage have reported that liquefaction may take place on not only sands but also fine-contained soils or non-plastic silts. Although not a few study has been performed to understand the liquefaction of sands, relatively little effort has been devoted to improving our understanding of the liquefaction characteristics for non-plastic soils. Given that liquefaction strength is largely associated to shear wave velocity, bender element test as well as direct simple shear test is employed to examine the stiffness of non-plastic silt more precisely. Through the soil tests, the stiffness of non-plastic silts from the bender element tests is identified as slightly greater than that from the direct simple shear test. Further, the stiffness of non-plastic silts appears to be smaller than that of clay.

  • PDF

The Analysis of Excavation Behavior Considering Small Strain Stiffness (미소변형율 강성을 고려한 지반굴착 해석)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.21-31
    • /
    • 2010
  • This paper describes research on the prediction of the vertical displacement of surface, horizontal displacements and bending moments in two anchored retaining wall for an excavation by a finite element program. It is very important to consider the appropriate constitutive model for the numerical analysis in excavation behavior. It is shown in this paper that the analyses of excavation considering small strain stiffness gives the more reasonable prediction of the vertical displacement of surface. and the parametric study on the small strain stiffness parameters for excavation analysis has been analysed.

  • PDF

Analysis of Behavior on GCP Composite Ground Considering Loading and Foundation Conditions (하중 및 기초조건에 따른 GCP 복합지반의 거동분석)

  • Kim, Gyeong-Eop;Park, Kyung-Ho;Kim, Dae-Hyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.127-137
    • /
    • 2018
  • Gravel Compaction Pile (hereinafter referred to as GCP) is a ground improvement technique by packing crushed stones on fragile clay ground, pressing it, and forming stakes on the foundation. Although many researchers have analyzed stress behavior of GCP composite ground on domestic GCP technique using laboratory experiment and field experiment, analyses of stress behavior according to the difference of stiffness of mat foundation loaded on the upper foundation of GCP composite ground have not been done actively. Therefore, this study aimed to identify the stress concentration ratio in accordance with the difference of basis stiffness by interpreting figures. To perform this, replacement ratio was changed and modelled using ABAQUS, software for finite element analysis and analyzed the stress concentration ratio, amounts of settlement, and maximum amounts of horizontal displacement of composite ground in accordance with the difference of stiffness. An analysis showed that the stress concentration ratio of rigid foundation was highly assessed than unloading of flexible foundation in case of unloading, while amounts of settlement under flexible unloading condition were slightly higher than under rigid condition. This indicates that the characteristic of stress behavior on the different stiffness of upper foundation needs to be clarified. In addition, the maximum horizontal displacement was generated in a constant level regardless of the difference of stiffness.

Effect of Ground Water Table on Deep Excavation Performance (지반 굴착시 지하수위가 벽체에 미치는 영향 분석)

  • Song, Ju-Sang;ABBAS, QAISAR;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.33-46
    • /
    • 2018
  • This study presents the experimental results on the performance of deep excavation by using image processing technique particle image velocimetry (PIV). The purpose of present study is to be checked the application of PIV for the successive ground deformation during deep excavation. To meet the objectives of concern study, a series of reduce scale model test box experiments were performed by considering the wall stiffness, ground water table effect and ground relative density. The results were presented in form of contours and vector plot and further based on PIV analysis wall and ground displacement profile were drawn. The results of present study, indicate that, the PIV technique is useful to demonstrate the ground deformation zone during the successive ground excavation.

Ground-Tunnel Interaction Effect Depending on the Ground Stiffness (지반의 강성변화에 따른 지반-터널 동적 상호작용 연구)

  • 김대상
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.339-343
    • /
    • 2001
  • Shield tunnel having circular section located in the soil or soft rock layer is liable to deform in such a way that its two diagonal diameters crossing each other expand and contract alternately during earthquakes. Based on this knowledge, the ground-tunnel interaction effect for this particular vibration mode is investigated. The ground surrounding a tunnel is assumed to be a homogeneous elastic medium. The bonded boundary condition on the ground-tunnel interface is considered. This suggests a firm bond between the ground and the tunnel lining. As Poisson's ratio and stiffness of the ground increases, the strain induced within the tunnel lining increases.

  • PDF

A Study on Bearing Capacity Evaluation Method of Surface Reinforcement Method for Soft Ground in Consideration of Stiffness (강성도를 고려한 연약지반 표층처리공법 지지력산정방법에 관한 연구)

  • Ham, Tae-Gew;Seo, Se-Gwan;Cho, Sam-Deok;Yang, Kee-Sok;You, Seung-Kyong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1118-1125
    • /
    • 2009
  • This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing Bearing Capacity Evaluation method for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 21 kinds of the laboratory model tests with the end restraint conditions of the reinforcement that comprises the constrained and partially constrained (3 types) conditions were conducted. According to result of tests, Terzaghi's bearing capacity method is adequate to calculate bearing capacity in non-stiff material(geotextile, geogrid). But, It can't adequate to stiff material(bamboo net). So, New bearing capacity method suggest surface reinforcement method of very soft ground which Terzaghi's bearing capacity method modify for effect of stiffness.

  • PDF

Theoretical Modeling of Surface Wave Propagation for SASW Testing Method (수중 주파수영역표면파괴기법의 역해석 과정에서 적용되는 파동해석기법)

  • Lee, Byung-Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.251-260
    • /
    • 2000
  • Applicabilities of two numerical methods, the 2-dimensional and the 3-dimensional method, are evaluated to inverse test results obtained from the underwater SASW(Spectral -Analysis-of-Surface-Waves) method. As a result of this study, it has been found that the 2-dimensional method can supposed to be applicable for the cases where stiffness of soil layer increases gradually with depth, and the stiffness is relatively low. For the other cases, however, it has been concluded that the 3-dimensional method needs to be applied to determine realistic theoretical dispersion curves. An example is also shown that in situ soil profile underwater is estimated from experimental dispersion curves using the 3-dimensional method. As a results, it can be concluded that the underwater SASW method can be effectively applied to explore the underwater soil condition.

  • PDF