• Title/Summary/Keyword: 지반 강성

Search Result 709, Processing Time 0.021 seconds

Effect of Foundation Flexibility of Offshore Wind Turbine on Force and Movement at Monopile Head (해상풍력발전기 기초구조물의 강성이 모노파일 두부의 부재력 및 변위에 미치는 영향)

  • Jung, Sungmoon;Kim, Sung-Ryul;Lee, Juhyung;Le, Chi Hung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.21-31
    • /
    • 2014
  • Recently, the research on renewable energy against depletion of fossil fuel have been actively carried out in the world. Especially, offshore wind turbines are very economical and innovative technology. However, offshore wind turbines experience large base moments due to the wind and wave loading, so the monopile with large diameter needs to be applied. For the economical design of the large diameter pile, it is important to consider the flexibility of the foundation to estimate the maximum moment accurately, based on studies conducted so far. In this paper, the foundation was modeled using the finite element method in order to better describe the large diameter effect of a monopile and the results were compared with those of p-y method. For the examples studied in this paper, the change in maximum moment was insignificant, but the maximum tilt angle from the finite element method was over 14% larger than that of p-y method. Therefore, the finite element approach is recommended to model the flexibility effect of the pile when large tilt angles may cause serviceability issues.

Analysis of Nonlinear Behaviors of Shotcrete-Steel Support Lining Considering the Axial Force Effects (축력의 영향을 고려한 숏크리트-강지보 합성 라이닝의 비선형 거동 분석)

  • Yu, Jeehwan;Kim, Jeongsoo;Kim, Moon Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.357-367
    • /
    • 2017
  • Bending and axial forces simultaneously occur at the cross-section of a shotcrete lining reinforced with steel supports due to the tunnel geometry. The shotcrete has changing flexural stiffness depending on the axial forces and, as a result, severely nonlinear behavior. The mechanical properties of a shotcrete-steel composite also depend on the type of steel support. This study presents a fiber section element model considering the effect of axial force to evaluate the nonlinear behavior of a shotcrete-steel composite. Additionally, the model was used to analyze the effects of different types of steel supports on the load capacity. Furthermore, a modified hyperbolic model for ground reaction, including strain-softening, is proposed to account for the ground-lining interaction. The model was validated by comparing the numerical results with results from previous load test performed on arched shotcrete specimens. The changes in mechanical responses of the lining were also investigated. Results show a lining with doubly reinforcement rebar has similar load capacity as a lining with H-shaped supports. The use of more materials for the steel support enhances the residual resistance. For all types of steel reinforcement, the contribution of steel supports during peak load decreases as the ground becomes stiffer.

Model Test for the Behavior of Retaining Walls Under Surcharge Load (상재하중을 받는 토류벽체의 거동에 관한 모형실험 연구)

  • Jung, On-Su;Huh, Kyung-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.49-57
    • /
    • 2005
  • The purpose of this study is to closely examine the influence of the surcharge load applied to the retaining wall through some model tests, in which wall stiffness in each stage of excavation, horizontal displacement of the retaining wall and surface displacement of the backfill according to wall stiffness and ground conditions, and change and distribution of the earth pressure applied to it were measured and their values were produced, then these values were mutually compared with their theoretical values and their values after analysis of the data obtained at the field, and they were analytically studied, in order to closely examine the influence of the surcharge load applied to the retaining wall. Findings from this study are as follows: The shape of ground surface settlement curve on the model ground under surcharge load, different from the distribution curve of regular probabilities which is of a shape of ground surface settlement under no surcharge load, appears in that settlement in an arching shape shows where the center part of surcharge load shows the maximum settlement. In examining the maximum horizontal displacement with the surcharge load applied to each stage of excavation, it occured at the point of 0.8H(excavation depth) when finally excavated. Regarding the range in which the displacement of the retaining wall increases according to application of surcharge load, the increment of displacement showed till the point of depth which is of two times of the distance of load from the upper part of the wall. Also since each displacement of the foundation plate caused by the ground surface settlement according to each stage of excavation occured most significantly at the final stage. Also since regarding wall stiffness, the wall of its thickness of 4mm(flexible coefficient $p:480m^3/t$), produced maximum 3 times of wall stiffness than its thickness of 9mm(flexible coefficient $p: 40m^3/t$), it was found out that influence of wall stiffness is so significant.

Parameter Identification and Nonlinear Seismic Analysis of Soil-Structure Interaction System (지반-구조물 상호작용계의 강성계수추정 및 비선형지진해석)

  • 윤정방;최준성;김재민;김문수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.41-49
    • /
    • 1997
  • This paper presents the result of an international cooperative research on the post-correlation analysis of forced vibration tests and the prediction of earthquake responses of a large-scale seismic test structure. The dynamic analysis is carried out using the axisymmetric finite element method incorporating in finite elements for the for field soil region. Through the post-correlation analysis, the properties of the soil layers are revised so that the best correlation in the responses may be obtained compared with the measured force vibration test data. Utilizing the revised soil properties as the initial linear values, the seismic responses are predicted for an earthquake using the equivalent linearlization technique. It has been found that the predicted responses by the equivalent nonlinear procedure are in excellent agreement with the observed responses, while those using the linear properties are fairly off from the measured results.

  • PDF

A Study on the Effect of Carrying Vertical Loads Over Embankment Piles (성토지지말뚝의 연직하중 분담효과에 관한 연구)

  • 홍원표;이광우
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.285-294
    • /
    • 2002
  • Embankment Piles, which is subjected to damage due to lateral movement of soft ground, can be classified into pile slab, cap beam pile, and isolated cap pile according to the installation pattern of pile cap. In the cap beam pile and the isolated cap pile method, the soil arch is developed by the different stiffness between pile and soil, and most embankment loads are transferred into embankment piles through soil arch. In these two methods, the difference of soil arch is that the soil arch of the cap beam pile method develops like the arch from of tunnel between cap beams and the soil arch of the isolated cap pile method develops like dome between isolated caps. Therefore, theoretical analysis methods on soil arching effect of the cap beam pile and the isolated cap pile method were respectively proposed according to their own arch form considering the limiting equilibrium of stresses in a crown of soil arch. And a series of model tests were performed both to investigate the load transfer by soil arching in fills above embankment piles and to verify the reliability of the theoretical analysis.

Strength and Stiffness of Silty Sands with Different Overconsolidation Ratios and Water Contents (과압밀비와 함수비를 고려한 실트질 사질토 지반의 강도 및 변형 특성)

  • Kim Hyun-Ju;Lee Kyoung-Suk;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.53-64
    • /
    • 2005
  • For geotechnical design in practice, soils are, in general, assumed to behave as a linear elastic or perfect plastic material. More realistic geotechnical design, however, should take into account various factors that affect soil behavior in the field, such as non-linearity of stress-strain response, stress history, and water content. In this study, a series of laboratory tests including triaxial and resonant column tests were peformed with sands of various silt contents, relative densities, stress states, OCR and water contents. This aims at investigating effects of various factors that affect strength and stiffness of sands. From the results in this study, it is found that the effect of OCR is significant for the intermediate stress-strain range from the initial to failure, while it may be ignored for the initial stiffness and peak strength. For the effect of water content, it is observed that the initial elastic modulus decreases with increasing water content at lower confining stress and relative density At higher confining stresses, the effect of water content Is found to become small.

Permanent Ground Deformation Effects on Underground Wastewater Pipeline Performance (영구지반변형이 매설된 하수도관로 성능에 미치는 영향)

  • Jeon, Sang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.284-289
    • /
    • 2016
  • In recent years, the earthquake sequence in Christchurch, New Zealand (NZ) was unprecedented in terms of repeated earthquake shocks with substantial levels of ground motion affecting modern infrastructure, and in particular, broad and precise reports for liquefaction-induced permanent ground deformation (PGD) and repairs of wastewater (WW) pipelines were collected. In this study, a geographical information system (GIS) and linear regression analysis were performed using data for the length and repair points of earthenware (EW) and concrete (CONC) wastewater pipelines acquired after the MW 6.2 February 22, 2011 earthquake. The repair rates (repairs/km) for the EW and CONC wastewater pipelines were evaluated inside the areas of PGD, and both angular distortion of ground and lateral ground strain were calculated from the high resolution LiDAR data acquired before and after the seismic event. The research results showed that both pipelines have similar trends of damage but the CONC wastewater pipeline with higher stiffness showed less damage. The results of linear regression analyses can be used to predict the repair rates for EW and CONC wastewater pipelines inside the areas of PGD induced by future earthquakes.

Parametric Study on Earthquake Responses of Soil-structure Interaction System by Substructure Method (부분구조법에 의한 지반-구조물상호작용시스템의 지진응답 매개변수 연구)

  • 박형기;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 1998
  • In the dynamic soil-structure interaction(SSI) analysis, numerous uncertain parameters are involved. They include the uncertainties in the definition of input motions, modeling of soil-structure interaction systems. analysis techniques, etc. This paper presents the results of parametric studies of the seismic responses of a reactor containment structure built on the viscoelastic layered soil. Among the numerous parameter, this study concentrates on the effects of definition point of the input motion, embedment of structure to the base soil, thickness of the top soil layer, and rigidity of the base soil. The substructure method using frequency independent impedances is adopted. The method is based on the mode superposition method in time domain using the composite modal damping values of th SSI system computed from the ratio of dissipated energy to the strain energy for each model. From the study results, the sensitivity of each parameter on the earthquake responses has been suggested for the practical application of the substructure method of SSI analysis.

  • PDF

Evaluation of Reinforcement Effects According to Reinforcement Type and Grouting Method (지반보강재의 형상과 그라우팅 방법에 따른 보강효과 평가)

  • Park, Jongseo;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.8
    • /
    • pp.13-20
    • /
    • 2019
  • In order to ground reinforcement, the chemical grouting, the anchor, the soil nailing system, the micropile, etc. can be mentioned by the methods widely used in domestic. The above ground reinforcement methods are developed by various methods depending on the type of reinforcement, installation method, presence of prestress, grouting method, etc. However, in common, the strength of reinforcement, the friction force of grout and reinforcement and the friction force of grout and ground are the main design variables. Therefore, the optimized ground reinforcement is a material with a high tensile strength of the reinforcement itself, the friction force between the reinforcement and the grout is high, and the application of an optimal grouting method is necessary to improve the friction force between the grout and the ground. In this study, a total of 20 model tests were conducted to analyze the reinforcement effects according to the shape of the reinforcement and the grouting method. As a result of the test, As a result of the experiment, it is judged that the reinforcing effect is superior to the perforated + wing type reinforcement and post grouting method.

Effect of Groundwater Flow on Ice-wall Integrity (얼음벽 형성에 대한 지하수 흐름의 영향)

  • Shin, Hosung;Kim, Jinwook;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.43-55
    • /
    • 2018
  • AGF (Artificial Ground Freezing) method is a temporary ground improvement method which can apply to all types of soil with the purpose of high stiffness and low hydraulic conductivity. However, the groundwater flow and the heterogeneity of the ground increase the uncertainty of the ice-column formation which hinders the reliability of this method. The effects of groundwater flow and layered heterogeneity on ice-wall integrity by AGF method were analyzed using finite element analysis program for a coupled thermo-hydro phenomena in the freezing ground. Groundwater flow changes circular ice-column into elliptical shapes and increases the time required for the formation of ice walls. The previous theoretical formula overestimated the completion time of the ice wall and the critical groundwater velocity by neglecting the thermal interaction between adjacent ice-columns. Numerical results presented the corrected formula and verified the proposed equation for the dimensionless ice-wall completion time. In the layered heterogeneous ground, the thickness of the layer with higher hydraulic conductivity and its relative magnitude were found to be important factors in the ice-wall completion time and critical velocity.