• Title/Summary/Keyword: 지반지지력

Search Result 934, Processing Time 0.035 seconds

Numerical Investigation on Load Supporting Mechanism of a Pile Constructed above Underground Cavity (공동이 존재하는 암반에 시공된 말뚝기초의 하중지지 메카니즘에 관한 수치해석 연구)

  • Choi, Go-Ny;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.5-16
    • /
    • 2011
  • This paper presents the results of a three-dimensional finite element analysis on load supporting mechanism of pile constructed above underground cavity in limestone rock formation. Considering a wide range of cavity conditions, the behavior of pile was studied using the bearing capacity, rock yielding pattern, stress distribution and deformation of pile head and the cavity. The results indicate that the load transfer mechanism of pile, rock yielding pattern and the reduction of bearing capacity of pile significantly vary with the location, size and length of cavity. Based on the results, graphical solutions defining the reduction of the bearing capacity with specific cavity conditions were suggested.

Characteristics of the Bearing Capacity for New Auger-Drilled Piles (새로운 매입말뚝 공법의 지지력 특성)

  • 백규호
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.25-36
    • /
    • 1997
  • To increase the bearing capacity of existing auger-drilled piles and decrease the noise and vibration during the installation of the piles, Spirally-reamed and Under-reamed auger trilled piling methods were developed. Field tests were performed to verify the inurement degree of bearing capacity and the constructional possibility of the new augerdrilled piling methods. The test results showed that the bearing capacity of the new augertrilled piles was fairly improved by the grooves of piles, and the skin friction was affected by the groove height and spacing between grooves. It was found that the skin friction takes the great part of total bearing capacity in auger drilled Biles, i.e. 74~80% in case of the existing methods and 81~86% in case of these methods. Moreover, the settlement of spirally-reamed and under reamed piles was smaller than that of the existing augerdrilled pile for the same loading state.

  • PDF

A Study on the Characteristics of Bearing Capacity of Soft Silt Soils Mixed with Sand (모래 섞인 연약한 실트지반의 지지력 특성에 관한 연구)

  • Lee Sang-Eun;Park Sang-Bum
    • The Journal of Engineering Geology
    • /
    • v.16 no.1 s.47
    • /
    • pp.31-43
    • /
    • 2006
  • As a result of calculating bearing capacity of soft silt soil(ML) and soft silt soils(ML', SM, SM') mixed with sand, all kinds of soils showed smaller values than existing expressions and when theoretical values are applied, considerable review is required. It was found that ultimate surcharge(bearing capacity) of soft silt soil was $q_{ult}=1.34C_u$ that of ML' soil in soft silt soils mixed with 3 kinds of sand $q_{ult}=1.40s$, that of SM soil $q_{ult}=1.73s$ and that of SM' soil $q_{ult}=2.72s$, Consequently, as content of sand having greater permeability than silt soil in creased, soil was stabilized gradually.

Bearing Capacity Determination Method for Spreading Footings Located above Underground Cavities (지하공동위에 위치한 확대기초지 지지력 산정 기법)

  • 유충식
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.75-84
    • /
    • 1997
  • This paper presents a bearing capacity determination method for spread footings subjected to vertical central loading and located above underground cavities. For the development of the method, a parametric study on bearing capacity of a spread footing located above an underground cavity was performed by using a threetimensional elasto-plastic finite element computer program. From the results of the finite element analysis, bearing capacity values for the conditions analyzed were determined and used as a data base from which semiempirical equation to for the bearing capacity determination method were formulated by means of a regression analysis. The effectiveness of this method was illustrated by comparing the bearing capacity values computed from this method with those of available model footing tests as well as finite element analysis data. It was concluded that the method presented in this paper can be effectively used for practical applications at least within the conditions investigated.

  • PDF

Evaluation of the Resistance Bias Factors to Develop LRFD for Driven Steel Pipe Piles (LRFD 설계를 위한 항타강관말뚝의 저항편향계수 산정)

  • Kwak, Kiseok;Park, Jaehyun;Choi, Yongkyu;Huh, Jungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.343-350
    • /
    • 2006
  • The resistance bias factors for driven steel pipe piles are evaluated as a part of study to develop the LRFD(Load and Resistance Factor Design) for foundation structures in Korea. The 43 data sets of static load tests and soil property tests performed in the whole domestic area were collected and analyzed to determine the representative bearing capacities of the piles using various methods. Based on the statistical analysis of the data, the Davisson's criterion is proved to be the most reasonable method for estimation of pile bearing capacity among the methods used. The static bearing capacity formulas and the Meyerhof method using N values are applied to calculate the design bearing capacity of the piles. The resistance bias factors of the driven steel pipe piles are evaluated respectively as 0.98 and 1.46 by comparison of the bearing capacities for both of the static bearing capacity formulas and the Meyerhof method. It is also shown that uncertainty of the static bearing capacity formulas is relatively less than that of the Meyerhof method.

Analysis of a Bi-directional Load Test Result on tong PHC Piles in Consideration of Residual Load (잔류하중을 고려한 장대 PHC 말뚝의 양방향 재하시험 결과해석)

  • Kim, Sung-Ryul;Chung, Sung-Gyo;Lee, Bong-Yeol
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.6
    • /
    • pp.85-93
    • /
    • 2008
  • For long piles driven in deep clay deposits, it is difficult to estimate the ultimate bearing capacity due to large resistance induced by long embedded depth, and also the load transfer curve due to large residual load induced by negative skin friction, even with the performance of pile load tests. In this research, a hi-directional load test on a PHC pile driven in deep soft deposit was performed in order to evaluate the tip and shaft resistances separately, which are feasible to estimate the ultimate bearing capacity of the pile. Residual load of the pile was determined by continuous monitoring of pile strains after the pile installation. The true resistance and true load-movement curve of the pile were properly estimated by taking account of the residual load. A model far behavior of the shaft resistance vs. movement was also proposed, which includes the effects of residual load based on the experiment. Consequently, it was proved that the residual load should be taken into consideration for correctly analyzing load test results of piles in deep clay deposits.

Evaluation of CPT-based Pile Load Capacity Factors with Cylindrical and Taper Pile (원통형 및 테이퍼말뚝의 하중-침하특성 및 CPT지지력상관계수)

  • Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong;Kim, Min-Kee;Hwang, Sung-Wuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.59-68
    • /
    • 2007
  • In this study, evaluation of load capacity and CPT-load capacity parameters were performed using calibration chamber tests for different types of piles including straight-side and tapered piles. Various soil conditions were considered in the investigation, aiming at establishing design procedure for foundation of electronic transmission tower structures. Test results show that no significant difference of total load capacity from straight-side and tapered piles, while individual components of base and shaft load capacities were quite different. Based on the test results, values of CPT-load capacity correlation parameters for different pile types were analyzed for the evaluation of both base and shaft load capacities.

A Study on the Determination of Bearing Capacity of Soft Silty Ground and Polluted Silty Ground with Wastewater and Factory Waste Oil (연약한 실트지반과 생활오폐수와 공장폐유로 오염된 실트지반의 지지력 결정에 관한 연구)

  • Ahn, Jong-Pil;Park, Sang-Bum
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.5-13
    • /
    • 2008
  • Laboratory model test with soft silty ground (ML) and polluted silty ground with wastewater and factory waste oil ($ML_p$) was conducted and the applicability of changes of bearing capacity from the increase of pollutants was compared and analyzed with existing findings. As silty ground polluted with wastewater and factory waste oil had increased contents of pollutants, plasticization of ground was fostered compared to soft silt ground due to the influence of pollutants, and characteristics of ground strength decreased. Critical surcharge value of soft silty ground $q_{cr}=4.14c_u$, ultimate bearing capacity value $q_{ult}=9.53c_u$, critical surcharge value of silty ground polluted with wastewater and factory waste oil $q_{cr}=1.78c_u$ and ultimate bearing capacity value $q_{ult}=4.39c_u$. Critical surcharge and ultimate bearing capacity of silty ground polluted with wastewater and factory waste oil were less than those of soft silty ground. It meant that shearing resistance due to the increase of pollutants decreased and rather a smaller value was obtained.

A Study on the Measurement of End Bearing Capacity for Large Diameter Drilled Shaft Constructed in Fault Zone Using the Static Bi-directional End Leading Test (양방향 선단재하시험을 이용한 단층파쇄대에 시공된 대구경 현장타설말뚝의 선단지지력 측정 연구)

  • 정창규;정성민;황근배;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.135-143
    • /
    • 2004
  • In the land section of marine bridge construction site, to confirm the end bearing of large diameter drilled shaft constructed in the fault zone which was discovered unexpectedly, the hi-directional end loading tests were performed. The objectives of this study are to confirm the end bearing of the pile constructed in fault zone and the increasing effect of end bearing after grouting the base ground beneath the pile toe. After grouting the pile base ground, the settlement of pile base decreased considerably and the pile base resistance increased more than twice.

Bearing Capacity Characteristics of the Light Weight Method Used Recycled EPS Beads (폐 EPS 입자를 활용한 경량성토공법의 지지력 평가)

  • Lee, Jongkyu;Lee, Bongjik;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.21-29
    • /
    • 2006
  • Light weight filling method prevents settlement of ground by decreasing the weight of fills. This method is increasingly used for it's convenience and workability. Styrofoam is increasingly used as a lightweight filling material in soft ground. The beneficial effects of the use of EPS derive from minimizing the stress increment, increasing the bearing capacity and reducing the settlement. For this study, model test and FEM analysis of bearing capacity is carried out composing two-layered ground with clay in the lower layer and lightweight filling material in upper layer. Based on the results obtained here in this study, it is concluded that the use of recycled EPS beads is acceptable lightweight fill. Light weight fills used for disposal is superior to typical embankment fills in bearing capacity.

  • PDF