• Title/Summary/Keyword: 지반증폭효과

Search Result 38, Processing Time 0.021 seconds

Application of Soil Factor on the Aseismic Design (내진 설계시 지반계수의 합리적 적용에 대한 연구)

  • 이인모;임종석
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.7-20
    • /
    • 1993
  • The first Korean earthquake resistant design code was enacted in 1988. In the code, the soil factor which takes into account both the soil amplification factor and the soil -structare interaction effect is divided into three groups : soil factor, 5 : 1.0, 1.2 and 1.5. In order to assist in choosing the soil factors appropriately in the earthquake resistant design, the local site effects on the based shear force induced by earthquakes are considered in depth for typical soil conditions in Korea. The depth of the alluvial and/or weathered zone is usually not deep and the fresh rock is found at depth shallower than 20 meters, and even at about 10 meters around Seoul. One dimensional wave propagation theory and the elastic half space method are used to obtain the soil -structure interaction effect as well as the soil amplification effect. The kinematic interaction effect due to scattering of waves by pile foundation is also considered. Finally, the soil factor is recommended for each soil condition from loose state to dense, and also from shallow soil depth to deep, so that the designer can choose the factor with-out difficulty.

  • PDF

Modeling of Earthquake Ground Motion in a Small-Scale Basin (소규모 분지에서의 지진 지반운동 모델링)

  • Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.92-101
    • /
    • 2012
  • Three-dimensional finite-difference simulation in a small-scale half-sphere basin with planar free-surface is performed for an arbitrary shear-dislocation point source. A new scheme to deal with free-surface boundary condition is presented. Then basin parameters are examined to understand main characteristics on ground-motion response in the basin. To analyze the frequency content of ground motion in the basin, spectral amplitudes are compared with each other for four sites inside and outside the basin. Also particle motions for those sites are examined to find which kind of wave plays a dominant role in ground-motion response. The results show that seismic energy is concentrated on a marginal area of the basin far from the source. This focusing effect is mainly due to constructive interference of the direct Swave with basin-edge induced surface waves. Also, ground-motion amplification over the deepest part of the basin is relatively lower than that above shallow basin edge. In the small-scale basin with relatively simple bedrock interface, therefore, the ground-motion amplification may be more related to the source azimuth or direction of the incident waves into the basin rather than depth of it.

Seismic Site Classes According to Site Period by Predicting Spatial Geotechnical Layers in Hongseong (홍성 지역의 공간 지층정보 예측을 통한 부지주기 토대의 지진공학적 부지분류)

  • Sun, Chang-Guk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.32-49
    • /
    • 2010
  • Site characterization on geological and geotechnical conditions was performed for evaluating the earthquake ground motions associated with seismic site effects at a small urbanized area, Hongseong, where structural damages were recorded by an earthquake of magnitude 5.0 on October 7, 1978. In the field, various geotechnical site investigations composed of borehole drillings and seismic tests for obtaining shear wave velocity profile were carried out at 16 sites. Based on the geotechnical data from site investigation and additional collection in and near Hongseong, an expert system on geotechnical information was implemented with the spatial framework of GIS. For practical application of the GIS-based geotechnical information system to assess the earthquake motions in a small urban area, spatial seismic zoning maps on geotechnical parameters, such as the bedrock depth and the site period ($T_G$), were created over the entire administrative district of Hongseong town, and the spatial distributions of seismic vulnerability potentials were intuitively examined. Spatial zonation was also performed to determine site coefficients for seismic design by adopting a site classification system based on $T_G$. A case study of seismic zonation in the Hongseong area verified that the GIS-based site investigation was very useful for regional prediction of earthquake ground motions in a small urbanized inland area.

A Study on the Dynamic Effect Influencing to Urban Railway Structures by Vibration from Near-field Excavating Work (근접장 굴착진동이 도시철도 구조물에 미치는 동적영향 연구)

  • Woo-Jin, Han;Seung-Ju, Jang;Sang-Soo, Bae;Seung-Yup, Jang;Myung-Seok, Bang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.41-53
    • /
    • 2022
  • In the excavation work like blasting/excavator work bordering on the urban railway, the dynamic safety of railway structures like tunnel, open-cut box structure and elevated bridge was investigated by numerical analysis in this study. The practically presented criteria on influential zones at the blasting work in the construction industry was numerically checked in cases of the precise vibration-controlled blasting (type II) and the small scale vibration-controlled blasting (type III) and it was shown that the criteria on blasting work methods needed to be supplemented through continuous field tests and numerical analyses. The influence of excavation vibration by mechanical excavators was especially investigated in case of earth auger and breaker. The numerical analysis of tunnel shows that the criteria on vibration velocities from the regression analysis of field test values was conservative. The amplification phenomenon of excavating vibration velocity was shown passing through the backfilling soil between the earth auger and the open-cut box structure. It was shown that the added-vibration on the superstructure of elevated bridge was occurred at the bottom of pile like earthquake when the excavator vibration was arriving at the pile toe. The systematic and continuous research on the vibration effect from excavating works was needed for the safety of urban railway structures and nearby facilities.

Analysis of Intensity Attenuation Characteristics Using Physics-based Earthquake Ground-motion Simulation with Site Effect in the Southern Korean Peninsula (한반도 남부에서 부지효과를 고려한 물리적 지진동 모델링 기반 진도 감쇠 특성 분석 연구)

  • An, So Hyeon;Kyung, Jai Bok;Song, Seok Goo;Cho, Hyung-Ik
    • Journal of the Korean earth science society
    • /
    • v.41 no.3
    • /
    • pp.238-247
    • /
    • 2020
  • This study simulated strong ground motion waveforms in the southern Korean Peninsula, based on the physical earthquake modeling of the Southern California Earthquake Center (SCEC) BroadBand Platform (BBP). Characteristics of intensity attenuation were investigated for M 6.0-7.0 events, incorporating the site effects. The SCEC BBP is software generates broadband (0-10 Hz) ground-motion waveforms for earthquake scenarios. Among five available modeling methods in the v16.5 platform, we used the Song Model. Approximately 50 earthquake scenarios each were simulated for M 6.0, 6.5, and 7.0 events. Representative metrics such as peak ground acceleration (PGA) and peak ground velocity (PGV) were obtained from the synthetic waveforms that were simulated before and after the consideration of site effects (VS30). They were then empirically converted to distribution of instrumental intensity. The intensity that considers the site effects is amplified at low rather than high VS30 zones.

Quantitative Analysis on Intensity of 1936 Jirisan Earthquake by Estimating Seismic Response Characteristics at the Site of Five-story Stone Pagoda in Ssang-gye-sa (쌍계사 오층 석탑 부지의 지진 응답 특성 평가를 통한 1936년 지리산 지진 세기의 정량적 분석)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Jae-Kwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.187-196
    • /
    • 2008
  • An earthquake of magnitude 5.0 occurred at Ssang-gye-sa, a Buddhist temple in Jirisan, located near the southern border of the Korean peninsula on 4 July 1936. It resulted in severe damage of several buildings and structures in Ssang-gye-sa. Particularly, the top component of a five-story stone pagoda in the temple was tipped over and fell down during the earthquake. This earthquake damage case would be usefully applied to estimating the intensity of ground motion in the Korean peninsula, a moderate seismicity region, where strong motion has never been recorded with the exception of historic seismic events. In order to estimate the local site effects and the corresponding ground motion at Ssang-gye-sa site, intensive site investigations including borehole drilling and in-situ seismic tests such as crosshole and SASW tests were performed in the temple area. Based on the site characteristics, site-specific seismic response analyses using various input motions were conducted for a representative Ssang-gye-sa site by means of both one-dimensional equivalent-linear and nonlinear methods with six input rock outcrop acceleration levels ranging from 0.044g to 0.220g. The resultant site-specific seismic responses indicated the amplified ground motions in the short-period range near the site period of Ssang-gye-sa. Furthermore, the intensity on rock outcrop of the 1936 Jirisan earthquake was estimated by making a comparison between the site responses analysis results in this study and the full-scaled seismic test of pagoda model in the prior study.

Analysis on dynamic numerical model of subsea railway tunnel considering various ground and seismic conditions (다양한 지반 및 지진하중 조건을 고려한 해저철도 터널의 동적 수치모델 분석)

  • Changwon Kwak;Jeongjun Park;Mintaek Yoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.583-603
    • /
    • 2023
  • Recently, the advancement of mechanical tunnel boring machine (TBM) technology and the characteristics of subsea railway tunnels subjected to hydrostatic pressure have led to the widespread application of shield TBM methods in the design and construction of subsea railway tunnels. Subsea railway tunnels are exposed in a constant pore water pressure and are influenced by the amplification of seismic waves during earthquake. In particular, seismic loads acting on subsea railway tunnels under various ground conditions such as soft ground, soft soil-rock composite ground, and fractured zones can cause significant changes in tunnel displacement and stress, thereby affecting tunnel safety. Additionally, the dynamic response of the ground and tunnel varies based on seismic load parameters such as frequency characteristics, seismic waveform, and peak acceleration, adding complexity to the behavior of the ground-tunnel structure system. In this study, a finite difference method is employed to model the entire ground-tunnel structure system, considering hydrostatic pressure, for the investigation of dynamic behavior of subsea railway tunnel during earthquake. Since the key factors influencing the dynamic behavior during seismic events are ground conditions and seismic waves, six analysis cases are established based on virtual ground conditions: Case-1 with weathered soil, Case-2 with hard rock, Case-3 with a composite ground of soil and hard rock in the tunnel longitudinal direction, Case-4 with the tunnel passing through a narrow fault zone, Case-5 with a composite ground of soft soil and hard rock in the tunnel longitudinal direction, and Case-6 with the tunnel passing through a wide fractured zone. As a result, horizontal displacements due to earthquakes tend to increase with an increase in ground stiffness, however, the displacements tend to be restrained due to the confining effects of the ground and the rigid shield segments. On the contrary, peak compressive stress of segment significantly increases with weaker ground stiffness and the effects of displacement restrain contribute the increase of peak compressive stress of segment.

A Study on the Seismic Damage Estimation in the Model District of Seoul City (서울시 모델 구역 지진피해 추정 연구)

  • Yoon, Eui-Taek;Ryu, Hyeuk;Kang, Tae-Seob;Kim, Jae-Kwan;Baag, Chang-Eob
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.41-52
    • /
    • 2005
  • The seismic damage assessment due io the postulated earthquake was attempted for the buildings in the model district of Seoul City. The model district was selected to represent the typical structural and residential characteristics of Seoul City. The buildings in the model district were classified into 11 structural types. For each structural type, the capacity and fragility curves were constructed with parameters presented in HAZUS. The ground motions due to the postulated earthquakes were artificially generated and ground response analyses were done for three kinds of soil profiles classified with respect to the depth of surface soil layer. The probability of damage state of each structural type was calculated using capacity spectrum method and fragility curve. Finally, the calculated results were translated into GIS database and mapped to evaluate the seismic damage in the model district.

3D Dynamic Finite Element Analysis and Corresponding Vibration of Asphalt Track Considering Material Characteristics and Design Thickness of Asphalt Concrete Roadbed Under Moving Load (아스팔트 콘크리트 설계두께 및 재료특성을 반영한 아스팔트 콘크리트 궤도 3차원 이동하중 동적해석 및 진동특성)

  • Lee, SeongHyeok;Seo, HyunSu;Jung, WooYoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.67-76
    • /
    • 2016
  • The asphalt-concrete trackbed system has many advantages in terms of maintenance and economics. However, methods to investigate practical use corresponding to the development of the trackbed system must be developed. The primary objective of this study was to evaluate the dynamic performance of the asphalt system in accordance with both the elastic and viscoelastic material characteristics and design thickness of the asphalt trackbed. More specifically, in order to reduce the uncertainty error of the Finite Element(FE) model, a three-dimensional full scale FE model was developed and then the infinite foundation model was considered. Finally, to compare the condition of viscoelastic materials, performance evaluation of the asphalt-concrete trackbed system was used to deal with the dynamic amplification factors; numerical results using isotropic-elastic materials in the FE analysis are presented.

Seismic Risk Assessment of Bridges Using Fragility Analysis (지진취약도분석을 통한 교량의 지진위험도 평가)

  • Yi, Jin-Hak;Youn, Jin-Yeong;Yun, Chung-Bang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.31-43
    • /
    • 2004
  • Seismic risk assessment of bridge is presented using fragility curves which represent the probability of damage of a structure virsus the peak ground acceleration. In theseismic fragility analysis, the structural damage is defined using the rotational ductility at the base of the bridge pier, which is obtained through nonlinear dynamic analysis for various input earthquakes. For the assessment of seismic risk of bridge, peak ground accelerations are obatined for various return periods from the seismic hazard map of Korea, which enables to calculate the probability density function of peak ground acceleration. Combining the probability density function of peak ground acceleration and the seismic fragility analysis, seismic risk assessment is performed. In this study, seismic fragility analysis is developed as a function of not the surface motion which the bridge actually suffers, but the rock outcrop motion which the aseismic design code is defined on, so that further analysis for the seismic hazard assessment may become available. Besides, the effects of the friction pot bearings and the friction pendulum bearings on the seismic fragility and risk analysis are examined. Lastly, three regions in Korea are considered and compared in the seismic risk assessment.