• 제목/요약/키워드: 지반의 침하해석

Search Result 628, Processing Time 0.026 seconds

A Study on Settlement according to Height and Ground stiffness on the MSEW on the IPM Bridge (토압분리형 교량의 보강토옹벽의 높이와 기초지반 강성에 따른 침하량 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.399-409
    • /
    • 2018
  • The mechanically stabilized earth wall (MSEW) of the IPM bridge is an important structure that constitutes the bridge, and supports the horizontal earth pressure and approach slab. Therefore, it is necessary to carefully analyze the settlement of MSEW of the IPM bridge. This study examined the settlement according to the height and ground stiffness on the MSEW on the IPM Bridge. According to the design guideline, the IPM Bridge (2016) was designed to have a height of 4.0 ~ 10.0m and the elastic settlement was calculated. The base area and the grounding pressure of the MSE wall increased linearly with the height, and the elastic settlement also increased linearly. In addition, the stiffness of the foundations satisfying the allowable settlement of the approach slab is a N value of 35 or more. The settlement of finite element analysis was estimated to be smaller than the elastic settlement, and the stiffness of the foundation ground satisfied the allowable settlement of the approach slab above N value of 20. Because the elastic settlement of the MSEW of the IPM Bridge was overestimated, it will be necessary to examine it carefully by finite element analysis.

Analysis of Subsidence Mechanism and Development of Evaluation Program (지반침하 메커니즘 분석 및 평가 프로그램 개발)

  • Choi Sung O.;Jeon Yang-Soo;Park Eu-Sup;Jung Yong-Bok;Chun Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.195-212
    • /
    • 2005
  • Surface subsidence which occurs with several reasons, such as collapse of gangway, discharge of groundwater, compaction of weak rock mass, and tunnel excavation in shallow depth, gives rise to a serious problem in national infra-structures. In this study, therefore, the mechanism of subsidence has been examined numerically to overcome the passive approach on subsidence occurrence area. With many kinds of numerical studies, the major geotechnical parameters have been selected and the weighted values have been defined for each parameters. Also the authors developed the numerical program which can estimate the possibility of subsidence occurrence, and proposed the decision method for objective and quantitative guideline. It is anticipated that this research will be helpful to establish the hazard map on subsidence region.

Survey and Numerical Analysis Cases of Ground Subsidence by Mine Goaf (광산 채굴적으로 인한 지반침하 조사 및 해석 사례)

  • Hyun-Bae Park;Seong-Woo Moon;Sejeong Ju;Jeungeum Lee;Yong-Seok Seo
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • South Korea's mining industry was actively developed until 1980, but subsequent declining profitability forced many mines to close. Most of the abandoned mines are susceptible to persistent subsidence because of the length of time since mining ceased. Accurate prediction of the locations and times of subsidence is difficult; therefore, this study aims to apply continuum analysis to past cases of subsidence to establish a method of predicting the location and magnitude of future subsidence. The study area is an area of ○○ mining located between the Yangsan fault zone and the Moryang fault zone, in which three subsidence events occurred between 2005 and 2009. Drilling surveys and electrical resistivity surveys were performed at subsidence sites determined the distribution of strata, and through laboratory tests obtained the physico-mechanical properties of the rock. Numerical analysis of the results found that the plastic status area includes the areas of actual subsidence and that continuum analysis can also be used to predict the location and magnitude of subsidence caused by mine goaf.

The Settlement Behavior of Dynamically Compacted High Rock Embankment (고성토 암버력 동다짐 지반의 침하거동)

  • Jie, Hong-Keun;Bae, Kyung-Tae;Noh, Jeong-Huyn;You, Kwang-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.61-69
    • /
    • 2012
  • A high rock embankment by means of phased dynamic compaction has hardly carried out in Korea. Settlement of each layer is measured in order to verify the settlement behavior of dynamically compacted high rock embankment. A high rock embankment is generally constructed by dividing into several sub-embankments. Such a sub-embankment and dynamic compaction may induce an increase of pressure at the lower part of embankment and cause a different behavior of ground from initial status. In this study, settlement of a high rock embankment is estimated using a hyperbolic model taking into construction history. The results from prediction are compared with those obtained from field measurements. And second creep settlement is predicted using pre-loading test.

Foundation Analysis and Design Using CPT Results : Settlement Estimation of Shallow Foundation (CPT 결과를 이용한 기초해석 및 설계 : 얕은 기초의 침하량 산정)

  • 이준환;박동규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.5-14
    • /
    • 2004
  • The settlement of foundations under working load conditions is an important design consideration. Well-designed foundations induce stress-strain states in the soil that are neither in the linear elastic range nor in the range usually associated with perfect plasticity. Thus, in order to accurately predict working settlements, analyses that are more realistic than simple elastic analyses are required. The settlements of footings in sand are often estimated based on the results of in-situ tests, particularly the standard penetration test (SPT) and the cone penetration test (CPT). In this paper, we analyze the load-settlement response of vertically loaded footings placed in sands using both the finite element method with a non-linear stress-strain model and the conventional elastic approach. Based on these analyses, we propose a procedure for the estimation of footing settlement in sands based on CPT results.

Extract the main factors related to ground subsidence near abandoned underground coal mine using PCA (PCA 기법을 이용한 폐탄광 지역의 지반침하 관련 요인 추출)

  • Choi, Jong-Kuk;Kim, Ki-Dong
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.301-304
    • /
    • 2007
  • 본 연구에서는 폐탄광 지역에서 발생하는 지반침하에 영향을 주는 주요 요인들을 추출하기 위하여 다변량 통계분석 방법의 하나인 주성분분석(Principle Component Analysis : PCA)기법과 지리정보시스템 (Geographic Information System : GIS)을 이용하였다. 이를 위해 연구지역에서 수행한 지표지질조사, 정밀조사, 실내암석시험 등으로부터 취득된 자료를 데이터베이스로 구축하고, 지반침하 위험지역 분포를 공간적으로 해석할 수 있는 지질, 토지이용, 경사도, 지표로부터 지하 갱도까지의 심도, 갱도의 지표상 위치로부터의 수평거리, 지하수심도, 투수계수, RMR(Rock Mass Rating) 값을 분석대상으로 선정하였다. 각 요인들이 연구지역 전체에 걸쳐 분포하도록 GIS의 공간분석 기법의 하나인 표면분석(Surface Analysis), 버퍼링기법(Buffering) 및 내삽법(Interpolation)을 이용하여 래스터 데이터베이스로 구축하고 이로부터 추출된 자료들을 입력값으로 하는 주성분분석을 수행하였다. 주성분분석 결과 폐탄광 지역의 지반침하에 영향을 주는 주요인을 추출하는 것이 가능하였으며, 연구지역은 지질 및 지반강도 관련 요인이 침하발생의 가장 큰 요인인 것으로 분석되었다.

  • PDF

Surface Subsidence according to Progressive Collapse of Circular opening (원형공동의 점진적인 붕락에 따른 지표침하특성)

  • 지정배;김종우
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.33-44
    • /
    • 2000
  • In order to investigate the effect of progressive collapse of underground circular opening on surface subsidence, laboratory model tests were performed. The modelling materials were sand which has been used as KS standard. Six test models which had respectively different depths of openings were produced. Surface subsidence and horizontal displacements were measured according to progressive collapse of underground opening. Some subsidence prediction method such as NCB method, profile function method and influence function method were considered to predict the subsidence of sand models. The profile function method approximated by Gaussian error function was finally suggested as the most appropriate to sand models.

  • PDF

Post-Liquefaction Induced Ground Settlement by Dissipation of Porewater Pressure under Drained Condition (지반 배수조건을 고려한 액상화 이후 과잉간극수압 소산에 따른 지반의 침하)

  • Yun, Seong-Kyu;Kim, Donghwan;Yang, Yeongchan;Kang, Gichun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.5-16
    • /
    • 2022
  • In the case of domestic seismic design, deformation of structures and ground is reviewed through undrained condition analysis and applied to design and maintenance. However, when the ground undergoes dissipation after liquefaction due to a dynamic load such as an earthquake, additional displacement occurs and greater damage occurs. Therefore, it is necessary to additionally analyze the drained conditions, It is necessary to grasp the exact ground behavior such as calculating and reviewing the amount of subsidence of the ground that has undergone the loss process after an earthquake and apply it to design and maintenance together. Therefore, in this study, numerical analysis was performed assuming undrained and drained conditions by dividing pure sandy soil into loose soil with Dr=30% and high-density soil with Dr=70%. In particular, when a dynamic load such as an earthquake is applied, considering the drained conditions of the ground, the settlement amount and the pore water pressure ratio of loose and dense ground are compared, This study focused on comparative analysis of settlement amount and pore water pressure ratio in the process of ground loss after an earthquake. As a result, the amount of subsidence during the dissipation process was 30 to 60 times greater than that of the earthquake.

A FEM Alalysis to the Sand Densification due to Increasing Loading (점증하중을 받는 사질토 지반의 조밀화에 대한 유한요소해석)

  • 한경제
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.79-85
    • /
    • 2000
  • 본 논문에서는 사질토 지반에 일정기간 계속하여 증가되는 단계별 하중이 작용할 때 발생할수 있는 지반의 밀도화 현상을 hyperbolic model의 매개변수 변화를 고려한 방법으로 유한요소법에 의한 수치적 침하해석에 반영해 주었다. 이를 위해 사질토의 상대밀도별 삼축압축실험을 실시하여 매개변수를 산정하였으며, 이를 토대로 각각의 상대밀도의 변화에 따른 매개변수값을 Lagrange의 다항식 수치보간법으로 프로그램에 반영하였다. 또한 유한요소프로그램 내에서 요소의 체적을 계산하고 체적의 변화를 상대밀도 개념으로 접근함으로서 지반의 밀도화를 프로그램내에서 모사할수 있도록 하였다. 본 연구에서 개발한 해석 프로그램에 의한 지반의 밀도화현상의 모사 결과를 실내 모형기초재하실험에 의하여 비교 분석해 본 결과 기존의 해석 보다 향상된 결과를 나타냄을 알 수 있었다.

  • PDF

Comparison of Compressibility between the Oedometer Tests with the Field Measurements in Namak Clay (계측결과를 이용한 남악점토의 압축특성 비교)

  • Kim, Dongbeum;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.15-20
    • /
    • 2008
  • Compressibility of the marine clay was mainly studied velocity of consolidation and numerical analysis by this time but studies of reevaluated from the field measurement data was a little. For last three years, areal fills and extensive field instrumentations including settlement and pore water pressure were performed in the site of the Youngsan River estuary site, South Korea. From the settlement data, field consolidation curves for sub-layers were reconstructed. Effective surcharge loads during the staged loadings were calculated using the fill heights and the excess pore water pressures in the ground. In the numerical analysis (PLAXIS), prefabricated vertical drains were also simulated. Laboratory, field, and numerical analysis showed good agreements in compressibility. Due to different conditions and limitations of the clay was the same range of the oedometer tests.

  • PDF