• Title/Summary/Keyword: 지반오염원

Search Result 34, Processing Time 0.023 seconds

Evaluation of Numerical Experiment of Pollution Dispersion on the Sewer Crack Occurrence (하수관거 균열발생에 따른 오염확산의 수치실험 평가)

  • Park, Jaesung;Bae, Wooseok;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.5-9
    • /
    • 2008
  • Because sewer is embedded in land, the pollutant permeating to underground so fast can cause contamination of soil when crack of sewer occurs. In this study, numerical modelling on dispersion of pollutant at sewer crack was performed. Based upon the study, the following conclusions were obtained. It was shown that transfer direction of pollutant was similar to the flow with topography slope of surface. It was exposed that the pollutant permeated to 8~10m depth. It is expected to offer efficiency in sewer management in the future through this research.

  • PDF

A Study on the Correlation between River Contamination Level and Ground Pollution Source through Korean Case Study (국내 사례분석을 통한 하천오염도와 지반오염원의 상관관계에 관한 연구)

  • Choi, Joohwan;Song, Wonjun;Lee, Junhwan
    • Journal of Korean Society of societal Security
    • /
    • v.3 no.1
    • /
    • pp.51-60
    • /
    • 2010
  • This study measured for comparison and analysis the correlation of River pollution and Soil contamination, based on the results of previous research, and then in order to increase the efficiency of study, heavy metals which cause serious side effects was limited to the case among pollutants. This study focused on the rivers that near the Urban and industrial districts, for example, Nak-Dong river, An-Yang river, Tae-Hwa river and the rivers that near the farm land or pasture, for example, Yeong-San river, Mi-Ho river, then compare and analyze the degree of actual pollution as gathered the results of Previous research. Correlationship about pollutants of river near the Urban, industrial area and drainage basin its river has been proven, and this expected because of the strong influence by point pollution source. On the other hand, I can found the opposite relationship where the river near the farm land or pasture, and this probably because of the influence by nonpoint pollution source.

  • PDF

Seepage-Advection-Dispersion Numerical Analysis of Offshore Rubble Mound Revetment Landfill Under Transient Flow (비정상류 조건에서 경사식호안매립장에 대한 침투이류 분산해석)

  • Hwang, Woong-Ki;Kim, Hyang-Eun;Kim, Tae-Hyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.1-9
    • /
    • 2020
  • This study analyzes contaminant movement under transient flow in a rubble mound revetment offshore waste landfill barrier system that prevents contaminant runoff. The barrier system consists of bottom layer and side barrier. For the bottom layer system, impermeable clay layer is used. For the side barrier system, the HDPE barrier sheet (primary element) plays the main role, and the intermediate protection layer (supplementary element) is responsible for the barrier. Seepage, advection, dispersion numerical analysis was carried out using SEEP / W and CTRAN / W programs. As a result, under abnormal conditions considering the fluctuation in tidal range, the volume and direction of the flow velocity vector of the pore water change with time and the dispersion concentration of the contaminant changes. When comparing the case of 2 m tidal range and 8 m tidal range, the larger the tide value, the higher the concentration of contaminant under abnormal conditions. It was found that the rate of change of the concentration of the contaminant changed depending on the change in the tidal range, and as a result, the outflow of the pollutant was smaller than that in the steady flow state.

Removal of Hydrophobic Contaminant using Amphiphilic Block Copolymer (양친성 블록공중합체를 이용한 소수성 오염원제거)

  • Lee, Junhyup;Shim, Jaeyoul;Kim, Younguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.15-19
    • /
    • 2014
  • Spilling pollutants and its contamination to the ground have serious impact to public resulting in various research about remediation techniques. In this study, the use of amphiphilic block copolymer for remediation was investigated with a series of laboratory tests on removal of hydrophobic contaminant in soil. Four types of amphiphilic block copolymer were developed and the efficiency of the cleaning was compared with surfactant using arbitrary diesel-contaminated soils. The results of the study show that the use of amphiphilic polymer in the soil washing process significantly enhanced the remediation of the contaminated soil and a potential of new methodology of eco-friendly remediation.

Characteristics of Stormwater Treatment in Construction Site (건설 현장 내 비점오염원 처리 특성 평가)

  • Choi, Younghoa;Kim, Changryong;Kim, Hyosang;Oh, Jihyun;Jeong, Soelhwa
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.69-75
    • /
    • 2010
  • Total suspendid solid (TSS) of non point source pollutants in construction site are in higher concentration than others (BOD, COD etc). Also, the TSS concentration is very sensitive to the rainfall intensity in early stage of construction. There are two methods for treatment of non point source pollutants, which are temporary treatment facility and filtering one. But they have disadvantages. Temporary facility system has very low efficiency and filtering system consumes high energy and takes up large footprint. This study shows how prefabricated flocculation/coagulation system is developped to cover the above weakness and evaluation of the system performance in construction site. The prefabricated flocculation/coagulation system has very high treatment efficiency comparing with temporary and filtering system and takes small footprint. Therefore, it expects that the system leads to prevention of pollution near construction site and reduction of public grievance. Proper coagulant dosage and sludge circulation facility application, controlling the height of sludge interfacial are necessary to maximize the system efficiency.

Proper Regulation of the Cutoff System in Offshore Landfill Built on Clay Ground with Double Walls (점토지반에 이중벽체가 적용된 해상폐기물매립장의 적정 차수 기준)

  • Hwang, Woong-Ki;Kim, Hyang-Eun;Choi, Hoseong;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.8
    • /
    • pp.5-15
    • /
    • 2019
  • This study was conducted to propose a reasonable requirement regulation of cutoff barriers composed of bottom layer and vertical barrier of offshore landfill for the prevention of contaminant leakage. The bottom layer was composed of impermeable clay layer; vertical walls were composed of double walls; outer wall was composed of steel sheet pile which registed against outer force; cutoff vertical barrier took the role of inner wall. Seepage-advection-dispersion numerical analysis was conducted using SEEP/W and CTRAN/W programs under steady and unsteady flows. The results showed that the values calculated under steady flow showed higher migration of pollutant than those of unsteady flow. The values calculated under steady flow are more valid from a design point of view. Under steady flow and the bottom clay layer and when the vertical barrier are homogeneous and completely well installed, respectively, the minimum required cutoff regulations for hydraulic conductivity, thickness, and embedded depth of the bottom clay layer and vertical barrier were suggested.

The Sorption Kinetic Studies and Development of Mixed Culture for Removal of Nonpoint Pollution Source (비점오염원 처리를 위한 혼합여재의 개발 및 흡착 Kinetic 연구)

  • Chung, Woojin;Lee, Sijin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.37-44
    • /
    • 2012
  • This study investigated on the adsorption of nonpoint pollution source using the Sand, hydroxyapatite(HAP), Zeolite and mixed culture. The adsorption of nonpoint pollution source on Sand, hydroxyapatite(HAP), Zeolite and mixed culture was investigated during a series of batch adsorption experiments. After the batch absorption experiments analysed COD, T-N, T-P on adsorption water. The experimental data was analysed using the pseudo-first-order adsorption kinetic models. Langmuir and Freundlich isotherm models were tested for their applicability. The maximum adsorbed amount $(Q_{max})$ of COD were found to be sand 0.0511mg/g, HAP 0.1905mg/g, Zeolite 1.0366mg/g and Mixed media 0.7444mg/g. The maximum adsorbed amount $(Q_{max})$ of T-N were found to be sand 0.0159mg/g, HAP 0.0537mg/g, Zeolite 0.5496mg/g and Mixed media 0.1374mg/g. The maximum adsorbed amount $(Q_{max})$ of T-P were found to be sand 0.0202mg/g, HAP 0.1342mg/g, Zeolite 0.0462mg/g and Mixed media 0.1180mg/g. As a result, the mixed media was effective to remove nonpoint pollution source.

Utilization of Centrifuge Test in Geoenvironmental Engineering: Consolidation and Contaminant Transport at Capped Dredged Sediment (원심모형실험의 지반환경공학적 이용: 캡핑된 준설퇴적토의 압밀과 오염원 이동)

  • Kim, Tae-Hyung;Kang, Ki-Min;Lee, Jeong-Woo;Jung, Su-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1060-1067
    • /
    • 2006
  • Sandy soils are generally used as a capping material to reduce the pollutants transport from the contaminated dredged sediment. However, dredged material capping is not widely used because regulatory agencies are concerned about the potential for contaminants migration through the cap. Movement of contaminated pore water from sediment into cap is mainly related to sediment consolidation during and after cap placement. To evaluate the significance of consolidation induced transport of contaminants from sediment into cap, research centrifuge tests were conducted. Centrifuge test results illustrate that advection and dispersion are the dominant contaminants transport processes and that capping reduces the potential of contaminant migration from the dredged sediment effectively.

  • PDF

Characteristics Evaluation of Non Point Source Treatment Facilities in Construction Site (건설 현장 내 비점오염원 처리 시설의 제거 특성 평가)

  • Choi, Younghoa;Jeong, Seolhwa;Kim, Changryong;Kim, Hyosang;Oh, Jihyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.53-62
    • /
    • 2009
  • This study was conducted to investigate characteristics of the non-point source pollution under construction and evaluate available pollution control methods. Suspended solid loading is high when soil disturbs by rainfall and this phenomenon is much more severe at the initial stage of construction than at the final one. There are three methods available for erosion and sediment control, which are check dam, silt fence, and geotextile. Check dam and silt fence are for control of suspense solids and geotextile is for preventing soil erosion during rainfall. They can be installed as temporary control facilities at construction sites. From the comparison of those methods, it was found that geotextile method was the most efficient for the runoff control of non-point source pollution. Check dam and silt fence can remove suspense solids by pore spaces to some degree, but the removal of pollutants mainly occurs through sedimentation. Because the temporary control facilities have limited removal efficiency of pollutant, they often cause civil claims and contamination of water environment. Hence, using a pressurized filtration system along with temporary control facilities, highly enhanced treatment efficiency was anticipated. In addition, the loading capacity of these techniques depends on filtration velocity and input loading. And their pre-treatments are necessary for efficient operation.

  • PDF

A Study on Effects of Rainfall on Contamination at Stream Around the Developed Quarry (강우가 석산개발 지역 주변 하천의 오염에 미치는 영향에 관한 연구)

  • Lee, Yang-Kyu;Han, Jung-Geun;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.63-70
    • /
    • 2014
  • This paper describes the influence of rainfall on contamination at stream around the developed quarry. The investigation results are analyzed to evaluate the relationship rainfall and heavy metals (or water pollution). In the relationship rainfall and heavy metals, the result showed that the heavy metal contaminations are caused by boulder stone, waste residue and stone sludge, which is reacted with the direct contamination source, in the burried layer. It also found that the water flow change of stream according to the rainfall increase affected the large effect to a contamination level of heavy metal. the water pollution was increased by time changed from the rainy season to the dry season. That is, a lot of suspended solids had been discharge from the developed quarry due to rainfall increase, and then pollution level of water increases as the undercurrent of suspended solids is generated in stream due to rainfall decrease. Therefore, it analyzed that continuous causes of heavy metal contamination and water pollution in stream are materials in the burried layer and a discharge of pollution source from the developed quarry due to rainfall.