• Title/Summary/Keyword: 지반붕괴범위

Search Result 32, Processing Time 0.017 seconds

Monitoring System of Rock Mass Displacement and Temperature Variation for KURT using Optical Sensor Cable (광섬유센서케이블을 이용한 지하연구시설의 지반변위 및 온도변화 감시시스템 구축)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • The optical fiber cable acting as a sensor was embedded in the underground research tunnel and portal area in order to monitor their stability and the spatial temperature variation. This system includes two types of sensing function to monitor the distributed strain and temperature along the line, where sensor cable is installed, not a point sensing. According to the results of one year monitoring around the KURT, there is no significant displacement or movement at the tunnel wall and portal slope. However, it would be able to aware of some phenomena as an advance notice at the tunnel wall which indicates the fracturing in rockmass and shotcrete fragmentation before rock falls accidently as well as movement of earth slope. The measurement resolution for rock mass displacement is 1 mm per 1 m and it covers 30 km length with every 1m interval in minimum. In temperature, the cable measures the range of $-160{\sim}600^{\circ}C$ with $0.01^{\circ}C$ resolution according to the cable types. This means that it would be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc.

A Proposal of Flow Limit for Soils at Zero Undrained Shear Strength (흙의 비배수전단강도가 0이 되는 함수비인 흐름한계의 제안)

  • Park, Sung-Sik;Nong, Zhenzhen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.73-84
    • /
    • 2013
  • When a slope failure or a debris flow occurs, a shear strength on failure plane becomes nearly zero and soil begins to flow like a non-cohesive liquid. A consistency of cohesive soils changes as a water content increases. Even a cohesive soil existing at liquid limit state has a small amount of shear strength. In this study, a water content, at which a shear strength of cohesive soils is zero and then cohesive soils will start to flow, was proposed. Three types of clays (kaolinite, bentonite and kaolinite (50%)+bentonite (50%)) were mixed with three different solutions (distilled water, sea water and microbial solution) at liquid limit state and then their water contents were increased step by step. Then, their undrained shear strength was measured using a portable vane shear device called Torvane. The ranges of undrained shear strength at liquid and plastic limits are 3.6-9.2 kPa and 24-45 kPa, respectively. On the other hand, the water content that corresponds to the value of the undrained shear strength changing most rapidly is called flow water content. The flow limit refers to the water content when undrained shear strength of cohesive soils is zero. In order to investigate the relationship between liquid limit and flow limit, the cohesive index was defined as a value of the difference between flow limit and liquid limit. The new plasticity index was defined as the value of difference between flow limit and plastic limit. The new liquidity index was also defined using flow limit. The values of flow limit are 1.5-2 times higher than those of liquid limit. At the same time, the values of new plasticity index are 2-5.5 times higher than those of original plasticity index.