• 제목/요약/키워드: 지반그라우팅

Search Result 310, Processing Time 0.035 seconds

Application of the SASW Method to the Evaluation of Grouting Performance for a Soft Ground of a Tunnel (터널 원지반의 그라우팅 보강 평가를 위한 SASW 기법의 적용)

  • 조미라;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.273-283
    • /
    • 2003
  • Fissured rock and soft ground always suggest, problems in the construction of the underground space. The stress release of the weak underground material by opening the underground space with a soft ground, fissures and joints can lead to the failure of the opening. Grouting of the weak rock and the soft ground, which is a process of injecting some bonding agents into the soft ground, is one of the measures to reinforce the soft ground and to prohibit the failure of the underground construction due to the stress release. The proper installation of the grouting is essential to ensuring the safety of the tunneling operation, so that the evaluation of the grouting performance is very significant. The general procedure of evaluating the grouting is coring the grouted section and measuring the compression strength of the core. However, sometimes when the grouted section is at the crown of the tunnel and the grouting is installed at a wide section, the coring is not good enough. This study is oriented to propose a new and a non-destructive procedure of evaluating the grouting performance. The proposed method is based on the wave propagation of elastic waves, and evaluates the shear stiffness of the ground and investigates the anomalies such as voids and cracks. The SASW ( Spectral-Analysis-of-Surface-Waves) method is one of the candidate s to make the inspection of the pouting performance, and is adopted in this study. The practical grouting activity was monitored by SASW method, and the proposed method was applied to the inspection of the grouting performance to check the verification of the proposed method.

Investigation of the Optimum Injection Pressure in Pressure Grouting by Laboratory Model Tests (모형시험을 통한 지반보강 그라우팅의 적정주입압력 연구)

  • 박종호;박용원
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.217-225
    • /
    • 2003
  • The ground reinforcement effect of pressure grouting depends on grout penetration into ground. It is not, however, easy to predict the grout penetration in the design process because of the heterogeneity of ground conditions. This study investigates the proper grouting pressure and grouting method through laboratory model tests for pressure grouting using loose to medium dense crushed rock and sandy ground using specially designed and fabricated device. The optimum injection pressure, grout quantity and injection time are investigated through performing pressure grouting under changing conditions of injection in this test. From the test results, it was found that optimum injection pressure covers the range of 3 to 4kg/cm$^2$.

Analysis of hydraulic behavior around tunnel after application of cutoff grouting and proposing a method for estimating grouting range (차수그라우팅 적용에 따른 터널주변 수리학적 거동 분석과 그라우팅 적용범위 산정방법의 제안)

  • Joon-Shik Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.79-89
    • /
    • 2024
  • Excessive inflow of groundwater during tunnel excavation not only affects the stability and constructability of the tunnel, but is also one of the main causes of ground settlement due to groundwater level drawdown. The most commonly applied measure against excessive groundwater inflow during tunnel excavation in soil or fractured zone is to reduce the ground permeability coefficient by injecting grout material. Generally, the grouting area is assumed to be same as the plastic zone that occurs during tunnel excavation, but injecting grout material in the area of plastic zone is appropriate only for reinforcement grouting. In order to determine the thickness of cutoff grouting, the amount of reduction in the water permeability coefficient due to the application of cutoff grouting must be considered. In this study, a method for estimating the range of cutoff grouting considering the reduction in permeability coefficient was mathematically derived and evaluated through computer numerical analysis.

A Study on the Waterproof Method to the Leakage Type of Underground Structure by Cement Grouting (지하구조물의 누수유형에 따른 시멘트그라우팅 방수기법에 관한 연구)

  • 천병식;최춘식
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.181-196
    • /
    • 2001
  • 지하구조물에 있어서 누수사고의 빈번한 발생 및 상습화 경향에도 불구하고 현재 국내에서 사용되고 있는 누수보수방법은 누수유형에 관계없이 일괄적으로 동일한 처리방식으로 보수하는 상황으로서 지하구조물 누수에 대하여 누수 유형별로 보수방법을 달리하는 적극적인 해결방안의 모색이 필요하다. 따라서, 본 연구에서는 지하구조물의 누수보수에 있어서 방수 그라우트재의 공학적 특성을 파악하고 현장상황에 적합한 방수그라우팅 기법을 수립하여 누수유형별로 적용한 사례를 중심으로 적용성을 고찰하였다. 방수그라우팅 적용사례를 분석한 결과 지하구조물의 누수방지를 위하여 누수상황 및 누수유형에 따라 주입재의 배합비를 적절히 변화시켜 주입재와 현장상황에 적합한 방수그라우팅 기법을 병행 적용하는 것이 확실한 방수효과를 얻을 수 있으며, 주입목표구간에 대해 단계적으로 수회로 나누어 순차적인 그라우팅과 가능한 한 저압, 소량, 장시간에 걸쳐 주입하는 것이 방수그라우팅 효과를 증대시킬 수 있는 것으로 판단된다. 또한, 현장 적용결과로부터 기존 방수이론의 영향요소에 추가하여 물시멘트비, 주입재의 입경, 주입시간 및 주입량, 혼화재 사용여부, 주입차수 등에 대한 다양한 영향요소의 검토가 필요한 것으로 판단된다.

  • PDF

Study on Applicability of Simultaneous Multiple Compaction Grouting Method in Soft Clay Ground (점성토 연약지반에서의 다중 동시주입 컴팩션 그라우팅 공법 적용성 연구)

  • Lee, Hyobum;Jung, Hyun-Seok;Jung, Eui-Youp;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.779-788
    • /
    • 2019
  • The compaction grouting method is one of the conventional ground improvement methods, which consolidates and compacts the surrounding ground through the injection of grout materials with low mobility. Injecting the grout into the ground can improve the soil properties, as well as form a composite of soil-grout columns. However, the conventional grout pumping is not applicable to handle multiple injection holes at the same time, which may diminish its constructability when the construction time is not enough. This paper proposes a simultaneous multiple compaction-grouting method using a new pump system developed to cover up simultaneously three injection holes at a time. Field injection tests with a single injection hole and with triangular arrangement of injection holes were conducted to evaluate the applicability of the proposed method to soft clay ground. In addition, a series of standard penetration tests (SPTs) were performed to assess the efficiency of each arrangement in improving the soft ground. It is noted from the in-situ test results that the interval distances between injection holes and the elapse time for ground stabilization are the crucial factors governing the applicability of the simultaneous multiple compaction-grouting method to improve the soft clay ground.

Improvement of Grouting by Short-period Vibration Energy (단주기 진동에너지에 의한 그라우팅 보강효과)

  • Seo, Moonbok;Kwon, Sanghoon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.7
    • /
    • pp.35-42
    • /
    • 2015
  • Grouting method has been widely used for the ground improvement and stabilization: mostly to block or control the ground water in the early years and to improve the ground, repair the structure in recent years, ever increasing its use. Despite many advantages so far, the existing grouting method also has some shortcomings including uncertain permeation of grouting with gravity type if the voids between the soil particles are narrow, and problems due to the relaxation of the neighboring ground when injected using injection pressure. As an alternative, a vibration injection method with constant amplitude and frequency has been developed in recent years, with the vibration grouting being reported to have a permeability increasing effect of grout material compared with the positive pressure injection type. Accordingly, the purpose of this study is to investigate the improvement effect of the vibration grouting that applies short-period vibration energy by varying vibration cycle, vibration time and ground conditions to evaluate the strength enhancing effect of grouting materials, expansion effect of grouting body, ground improvement effect of the grouting and the penetration characteristics of the rock joint. The findings of this study show the improved compressive strength of grout, expansion of grouting body and increased penetration rate, according to the vibration compared with non-vibration under the loose soil condition.

A Study on the Vibration Reduction Effect of a Soil Grouting (그라우팅공법에 의한 지반진동감소 연구)

  • Huh, Young
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.173-180
    • /
    • 1995
  • Application of soil grouting method was adopted to reduce the vibration amplitude which propagates from the source. The direct formulation of the Boundary Element Method was applied to make the numerical model of soil. It was found form this study that the most effective location of the grouting layer is directly under the source of the vibration and the width of the grouting layer does not need to be longer than the required width which can be determined by numerical analysis.

  • PDF

Analysis of ground reinforcement effect using fracturing grouting (침투 및 할렬주입에 의한 지반보강 효과에 관한 연구)

  • Lee, J.S.;Lee, I.M.;Chung, H.S.;Lee, D.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.349-360
    • /
    • 2003
  • A practical modeling approach has been proposed in this study to better understand the behavior of penetration grouting which is normally applied to the jointed rock masses to increase the bearing capacity and to reduce the ground water flow into the tunnel. Based on Bingham model together with a steady-state flow of the grout, penetration model is simulated in the commercial package called UDEC and, injection pressure as well as joint thickness are found to be the main parameters to determine the range of grout spread. Another numerical model on fracturing grouting is also suggested and, in this case, the tensile strength as well as cohesion of the rock masses are proven to be the major factors to decide the fracturing mechanism of the rock masses. The reinforcement effect of the grout-reinforced rock masses is calculated from the suggested algorithm on orthotropic material model and it is found that the directional stiffness of reinforced rock masses is increased up to 3 to 4 times compared with original jointed rock masses. Future work will be concentrated on the water control around the tunnel by the grout injection and a model test will also be performed to verify the suggested methods developed in this study.

  • PDF

Pre-grouting for CHI of EPB shield TBM in difficult grounds: a case study of Daegok-Sosa railway tunnel (복합지반 EPB TBM 커터교체를 위한 그라우팅 수행 사례)

  • Kang, Sung-Wook;Chang, Jaehoon;Lee, Jae-Won;Kim, Dae-Young;Shin, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.281-302
    • /
    • 2021
  • Railway projects have been consistently increasing in Korea. In relation to this trend, the mechanized tunneling using Tunnel Boring Machine (TBM) is preferably applied for mining urban areas and passing under rivers. The TBM tunneling under difficult grounds like mixed faces with high water pressure could require ground improvements for stable TBM advance or safe cutter head intervention (CHI). In this study, pre-grouting works for CHI in Daegok-Sosa railway project are presented in terms of the grouting zone design, the executions and the results, the lessons learned from the experience. It should be mentioned that the grouting from inside TBM was carried out several times and turned out to be inefficient in the project. Therefore, grouting experiences from the surface are highlighted in this study. Jet grouting was implemented on CHI points on land, while permeation grouting off shore in the Han River, which mostly allow to access the cutter head of TBM in free air with stable faces. The results of CHI works have been analyzed and the lesson learned are suggested.