• Title/Summary/Keyword: 지반구조물 상호작용

Search Result 310, Processing Time 0.024 seconds

Evaluation of Inertial Interaction of a Multi-degree-of-freedom Structure during a Large-scale 1-g Shaking Table Test (대형 진동대 실험을 이용한 다자유도 구조물의 관성 상호작용 평가)

  • Chae, Jonghoon;Yoon, Hyungchul;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.17-28
    • /
    • 2022
  • The effect of the soil-structure interaction (SSI) on has been recently evaluated in shaking table tests. However, most of these tests were conducted on single-degree-of-freedom (SDOF) superstructures and a single-pile. This study investigates the inertial interaction effect of a multi-degree-of-freedom (MDOF) superstructure system with a group piles on a large-scale shaking table test. Whereas the SDOF superstructure system shows a single-frequency amplification tendency, the MDOF superstructure system exhibited amplification tendencies of the acceleration phase and frequency responses for multiple frequencies. In addition, the amplification phenomenon between the footing and the column-type superstructure exceeded that between the footing and the wall-type superstructure, indicating a greater inertial interaction effect of the column-type superstructure. The relationship between shear force and inertial force, the relative vertical and horizontal displacements on the footing was figured out. Also, the ananlysis of dynamic p-y curve at each depth was conducted. In summary, the MDOF and SDOP superstructure systems exhibited different behaviors and the column-type superstructure exerted a higher interaction effect than the wall-type superstructure.

Effect of the Nonlinearity of the Soft Soil on the Elastic and Inelastic Seismic Response Spectra (연약지반의 비선형성이 탄성 및 비탄성 지진응답스펙트럼에 미치는 영향)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.11-18
    • /
    • 2005
  • Inelastic seismic analysis is necessary for the seismic design due to the nonlinear behavior of a structure-soil system, and the importance of the performance based design considering the soil-structure interaction is recognized for the reasonable seismic design. In this study, elastic and inelastic seismic response analyses of a single degree of freedom system on the soft soil layer were peformed considering the nonlinearity of the soil for the 11 weak or moderate, and 5 strong earthquakes scaled to the nominal peak acceleration of 0.075g, 0.15g, 0.2g and 0.3g. Seismic response analyses for the structure-soil system were peformed in one step applying the earthquake motions to the bedrock In the frequency domain, using a pseudo 3-D dynamic analysis software. Study results indicate that it is necessary to consider the nonlinear soil-structure interaction effects and to perform the performance based seismic design for the various soil layers rather than to follow the routine procedures specified in the seismic design codes. Nonlinearity of the soft soil excited with the weak earthquakes also affected significantly to the elastic and inelastic responses due to the nonlinear soil amplification of the earthquake motions, and it was pronounced especially for the elastic ones.

Dynamic Infinite Elements for Soil-Structure Interaction Analysis (지반-구조물의 상호작용해석을 위한 동적무한요소)

  • Yang, Sin Chu;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.47-58
    • /
    • 1991
  • This paper presents dynamic infinite elements for soil-structure interaction analysis. In order to discretize the far field of the unbounded soil media, axisymmetric infinite elements which are capable of propagating multi-waves are proposed. An efficient numerical integration scheme for constructing the element characteristic matrices of the infinite elements in developed based on Gauss-Laguerre quadrature. The efficiency of the infinite elements is demonstrated by comparing the computed impedances of rigid circular footings on an elastic half space and on a layered half spaces with those obtained analytically.

  • PDF

A validity study on SSI analysis by comparing the complete system model and the underground structure fixed-end model (연속체 모델과 지하구조물 고정단 모델의 비교를 통한 SSI 해석의 타당성 연구)

  • You, Kwang-Ho;Kim, Seung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.757-772
    • /
    • 2018
  • Recently, earthquakes have occurred in large cities such as Gyeongju and Pohang, and seismic analysis studies have been actively conducted in various fields. However, since most of the previous seismic analyses have dealt with ground structures and the ground separately, there is a lack of a study on the complete soil-structure dynamic interaction. Therefore, in this study, a sensitivity analysis is conducted with MIDAS GEN and MIDAS GTS NX to apply the underground structure fixed-end model considering only the building and the complete system model considering both the building and the ground, respectively and the validity of dynamic analysis considering SSI is examined. As a result of the study, in most conditions it is found that the maximum horizontal displacement of the tall building in case of the underground structure fixed-end model is estimated to be smaller, the bending stress is larger, and the range of the weak part is smaller than that of the complete system model. Therefore, it is expected to be more reasonable to use the complete system model considering soil-structure interaction in seismic analysis.

The Behavior of the Cast-in-place Pile Socketed in Rock Considering Soil-Structure Interaction (지반-구조뭍간 상호작용을 고려한 암반에 근입된 현장타설말뚝의 거동)

  • 최진오;권오성;김명모
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.211-222
    • /
    • 2000
  • The design values of rock socketed pile related with properties of rock mass are not clearly established. However, the drilled shafts socketed in rock are widely used as the foundation of large scaled structure. In this study, the characteristics of behavior of rock socketed pile is researched, and the properties of interface between pile and rock considering soil-structure interaction are evaluated for numerical modeling of rock socketed pile based on the previous researches. Based on the properties of interface and rock mass, the behaviors of rock socketed piles are numerically modeled and compared with field measurement. To verify the numerical analysis, a micro pile socketed in rock is modeled and the results of numerical analysis are compared with field measurement. The numerical results show a good agreement with field measured data, especially in terms of load transfer characteristics.

  • PDF

Seismic Soil-Structure Interaction Analyses of LNG Storage Tanks Depending on Foundation Type (기초 형식에 따른 LNG 저장탱크의 지반-구조물 상호작용을 고려한 지진응답 분석)

  • Son, Il-Min;Kim, Jae-Min;Lee, Changho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.155-164
    • /
    • 2019
  • In this study, the soil-structure interaction(SSI) effect on the seismic response of LNG storage tanks was investigated according to the type of foundation. For this purpose, a typical of LNG storage tank with a diameter of 71m, which is constructed on a 30m thick clay layer over bedrock was selected, and nonlinearity of the soil was taken into account by the equivalent linearization method. Four different types of foundations including shallow foundation, piled raft foundation, and pile foundations(surface and floating types) were considered. In addition, the effect of soil compaction in group piles on seismic response of the tank was investigated. The KIESSI-3D, which is a SSI analysis package in the frequency domain, was used for the SSI analysis. Stresses in the outer tank, and base shear and overturning moment in the inner tank were calculated. From the comparisons, the following conclusions could be made: (1) Conventional fixed base seismic responses of outer tank and inner tank can be much larger than those of considering the SSI effect; (2) The influence of SSI on the dynamic response of the inner tank and the outer tank depends on the foundation types; and (3) Change in the seismic response of the structure by soil compaction in the piled raft foundation is about 10% and its effect is not negligible in the seismic design of the structure.

Sliding Conditions at the Interface between Soil and Underground Structure (지반과 지하구조물 경계의 미끄러짐 조건에 관한 연구)

  • 김대상
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.7-11
    • /
    • 2002
  • By focusing on the resonant vibration mode of soil-underground structure system, this paper obtained dynamic soil stiffness and easy sliding conditions at the interface between soil and underground structure. Multi-step method is employed to isolate two primary causes of soil-structure interaction. Mohr-Coulomb criterion is used to determine the threshold level of the sliding. To find out the conditions the interface slides easily, parametric studies are performed about the factors governing sliding, which are the size and location of underground structures, ground condition, the configuration of surface deposit and interface friction coefficients.

Foundation Modeling Considering the Soil-Structure Interaction (지반-구조물 상호작용을 고려한 기초모델링)

  • Lee, Yong-Jei;Kim, Tae-Jin;Maria, Feng
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.13-22
    • /
    • 2012
  • Even with its significant influence on the dynamic analysis and foundation design of structures, sometimes the soil-structure interaction has been ignored during the design process. One of the reasons is due to the fact that the modeling procedures are too complicated to meet the requirements in practice. In this study, using the Cali(IT)2 building in California with high and frequent seismic activities, the analysis differences for different boundary conditions are reviewed. The Beam on Nonlinear Winkler Foundation Model, one of the foundation modeling methods, is modified for easy use by the Linear Matrix Inequalities Model Reduction Technique. The product of the proposed process is applied to create the Finite Element Model. The results show fairly good agreement with the real data acquired from the Cal(IT)2 building.

Damage Analysis of Nearby Structures with the Consideration of Tunnel Construction Conditions in Sandy and Clayey Ground (모래 및 점토지반에서 터널시공조건을 고려한 인접구조물의 손상도 분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.53-63
    • /
    • 2011
  • This paper investigates the effects of tunnelling-induced ground movements on nearby structures, considering soil-structure interactions of different ground (loose sand, dense sand, soft clay, stiff clay) and construction conditions (ground loss). The response of four-story block structures, which are subjected to tunnelling-induced ground movements, has been investigated in different ground and construction conditions (ground loss) using numerical analysis. The structures for numerical analysis has been modelled using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four-story block structures has been investigated with a ground movement magnitude and compared in terms of ground and construction conditions (ground loss) considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in structures, has been provided in terms of ground and construction conditions (ground loss) using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby structures due to tunnelling-induced ground movements.

Response Analysis of Nearby Structures with the Consideration of Tunnel Construction and Ground Conditions (터널시공 및 지반조건을 반영한 인접구조물의 거동분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.255-263
    • /
    • 2010
  • This paper investigates the effects of tunnelling-induced ground movements on nearby structures, considering soil-structure interactions of different construction (ground loss) and soil characteristics. The response of four-story block structures, which are subjected to tunnelling-induced ground movements, has been investigated in different construction (ground loss) and soil conditions using numerical analysis. The structures for numerical analysis has been modelled using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four-story block structures has been investigated with a ground movement magnitude and compared in terms of construction (ground loss) and soil conditions considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in structures, has been provided in terms of construction (ground loss) and soil conditions using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby structures due to tunnelling-induced ground movements.