• Title/Summary/Keyword: 지반거동

Search Result 2,906, Processing Time 0.024 seconds

Experimental Study on Stress Sharing Behavior of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio (저치환율 모래다짐말뚝에 의한 복합지반의 응력분담거동에 대한 실험적 연구)

  • 유승경
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.253-261
    • /
    • 2003
  • Mechanical behavior of composition pound improved by sand compaction pile (SCP) with low replacement area ratio could be more significantly affected by mechanical interaction between sand piles and clays than that of clay ground improved by SD or SCP with high replacement area ratio. It is essential to elucidate the mechanical interaction in the improved clay ground, in order to accurately estimate behavior in reducing settlement of the improved ground and increasing strength of clays. In this paper, through a series of model tests of composition ground improved by SCP with low replacement area ratio, each mechanical behaviors of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing behavior between sand piles and clays.

Behavior of Back Ground of the Laterally Loaded Single Pile (수평하중이 작용하는 단독말뚝의 배면지반의 저항거동 특성)

  • Bae, Jong-Soon;Kim, Sung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.53-60
    • /
    • 2008
  • In this study, various kinds of behavior characteristics such as deformation area zone of back ground, failure angle and rotation point are examined on the laterally loaded single pile in the homogeneous ground through a model test. The main obtained conclusions are summarized as follows; In the back ground of single pile to which the lateral load is applied, failure surface shows almost linear movement characteristics and it is inclined to converge to constant values no matter how the length of pile and the pile head displacement.

Comparison of Stain Rate-Dependent Consolidation Behaviors of Olga-C Embankment with and without Vertical Drains (배수재 설치 및 미설치 구역으로 구성된 Olga-C 성토지반의 변형률 속도 의존적인 압밀거동 비교)

  • Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.39-46
    • /
    • 2000
  • 본 논문에서는 배수재가 설치된 구역과 설치되지 않은 구역으로 구성된 Olga-C 시험성토지반의 변형률속도 의존적인 압밀거동을 서술하였다. 배수재가 설치된 지반이 압밀거동에 대한 변형률속도의 영향을 해석하기 위하여 응력-변형률-변형률 속도의 관계식(v-$\varepsilon$v- v)을 이용한 축대칭 비선형 점소성 모델을 제안하였다. 제안된 모델은 실험실과 현장의 변형률속도 차이뿐만 아니라 간극수압의 소산과 생성의 복합적인 압밀과정을 고려할 수 있다. 연직 및 반경방향의 배수효과에 의해 배수재가 설치된 지반(Zone B)에서 유발되는 변형률 속도는 배수재가 설치되지 않은 연약지반 (Zone A)의 변형률 속도보다 크다. 유발된 변형률 속도의 영향으로 Zone B의 선행압밀하중도 Zone A에서 유발되는 선행압밀하중보다 크다. Olga-C 지역의 Zone A 에서는 응력완화효과가 유발되지만, Zone B에서는 응력완화효과가 유발 되지 않았다.

  • PDF

Behavior of Traveling Vehicle According to Soil Properties (토질특성에 따른 이동차량의 거동)

  • 박영호;김운영
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.125-136
    • /
    • 1997
  • The fullsized drawbar pull test is carried out in Yeog-gol area to find out the effect of test vehicle's trafficability with the variation of density and water content at the weathered granite soils and water content at the clayey soils. According to the results, it is found that the behavior of optimum drawbar pull is effected not only by water content but also by density. This paper showed the method of determination of optimum points at a curve of drawbar pull varying with the conditons of soils. And it also showed the optimum drawbar pull coefficient and optimum slip varying with the density of the weathered granite soils.

  • PDF

Behaviour of a Single Pile in Heaving Ground Due to Ground Excavation (지하터파기로 인해 융기(Heaving)가 발생한 지반에 근입된 단독말뚝의 거동)

  • Lee, Cheolju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • A finite element analysis has been conducted to clarify the behaviour of a single pile in heaving ground related to ground excavation. The numerical analysis has included soil slip at the pile-soil interface, analysing the interaction between the pile and the clay has been studied. The study includes the upward movement of the pile, the relative shear displacement between the pile and the soil and the shear stresses at the interface and the axial force on the pile. In particular, the shear stress transfer mechanism at the pile-soil interface related to a decrease in the vertical soil stress has been rigorously analysed. Due to the reductions in the vertical soil stress after excavation, the relative shear displacement and the shear stress along the pile have been changed. Upward shear stress developed at most part of the pile (Z/L=0.0-0.8), while downward shear stress is mobilized near the pile tip (Z/L=0.8-1.0) resulting in tensile force on the pile, where Z is the pile location and L is the pile length. Some insights into the pile behaviour in heaving ground analysed from the numerical analyses has been reported.

Evaluation of Rocking Behaviors During Earthquake for the Shallow Foundation System on the Weathered Soil Using Dynamic Centrifuge Test (동적 원심모형실험을 이용한 풍화토 지반에 놓인 얕은기초 시스템의 지진 시 회전 거동 특성 평가)

  • Ha, Jeong-Gon;Jo, Seong-Bae;Park, Heon-Joon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.5-16
    • /
    • 2017
  • Rocking behavior of shallow foundation during the earthquake can reduce the seismic load of the superstructure. The dynamic centrifuge tests were performed to investigate the availability of using rocking behavior for the weathered soil condition. The centrifuge test model was composed of the weathered soil, shallow foundation and single degree of freedom structure. And the accelerations of soil, foundation and structure, and the foundation settlement were measured during the earthquake. From the test result, the seismic load of the structure for the strong earthquake input was reduced by the rocking behavior with foundation uplift and the maximum foundation settlement was less than 0.5% of the foundation width. This shows the potential that the rocking foundation concept can be used in the economical seismic design of foundation for the weathered soil in the future with additional research and verification.

Evaluation of Rocking Mechanism for Embedded Shallow Foundation via Horizontal Slow Cyclic Tests (수평반복하중 실험을 이용한 근입된 얕은 기초의 회전거동 메커니즘 평가)

  • Ko, Kil-Wan;Ha, Jeong-Gon;Park, Heon-Joon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.47-59
    • /
    • 2016
  • Rocking behavior of shallow foundation reduces the superstructure load during earthquake. However, because of deficiency of understanding of rocking mechanism and soil permanent deformation, it has not been applied to real construction. In this study, slow cyclic tests were conducted for embedded shallow foundations with various slenderness ratio via centrifuge tests. From the variation of earth pressure 'soil rounding surface' phenomenon which makes maximum overturning moment equal to ultimate moment capacity was observed. Rocking and sliding behavior mechanism was evaluated. Also, nonlinear behavior and energy dissipation increase as rotation angle increases. And ultimate moment capacity of embedded foundation is larger than that of surface foundation. Finally, adequate ultimate moment capacity can be suggested for seismic design through this study.

Analysis of Ground Behavior applied to the Design of Underground Opening Structures (지하공동구조물의 설계시 적용되는 지반거동해석)

  • 박남서;이성민
    • Explosives and Blasting
    • /
    • v.15 no.1
    • /
    • pp.44-60
    • /
    • 1997
  • The design of underground cavern is basically governed by the mechanical properties of ground mass distributed around excavation. It is seldom possible to consider all the factors of ground mass properties in the evaluation of ground mass behavior as well as to classify those factors to a simple category. Until computer sciences have developed to calculate complex and laborious mechanical simulation of underground openings, ground behavior was quantitatively and qualitatively evaluated using empirical classification system. In this paper, analysis methods of ground behavior for underground cavern using the prediction of loosening zone, empirical method derived from rock mass classification and element stress analysis are described with chronological sequence.

  • PDF

Analysis of Ground Behavior applied to the Design of Underground Opening Structures (지하공동구조물의 설계시 적용되는 지반거동해석)

  • 박남서;이성민
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.38-53
    • /
    • 1991
  • The design of underground cavern is basically governed by the mechanical properties of ground mass distributed around excavation. It is seldom possible to consider all the factors of ground mass properties in the evaluation of ground mass behavior as well as to classify those factors to a simple category. Until computer sciences have developed to calculate complex and laborious mechanical simulation of underground openings, ground behavior was quantitatively and qualitatively evaluated using empirical classification system. In this paper, analysis methods of ground behavior for underground cavern using the prediction of loosening zone, empirical method derived from rock mass classification and element stress analysis are described with chronological sequence.

  • PDF