• Title/Summary/Keyword: 지반강도

Search Result 1,948, Processing Time 0.033 seconds

Evaluation of Field Applicability with Coal Mine Drainage Sludge as a Liner: Part II: Effect of Freezing/Thawing in CMDS Mixed Liner (차수재로의 광산슬러지 재활용 적용성 평가: Part II: 동결/융해에 의한 광산슬러지 혼합 차수재의 거동)

  • Lee, Jai-Young;Bae, Sun-Young;Park, Kyoung-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.73-79
    • /
    • 2011
  • Based on the results of Part 1 of our two-parts paper, the possibility on field applicability of CMDS(Coal Mine Drainage Sludge) mixed with bentonite and cement as a liner in landfill sites was investigated. The optimum moisture content that met the landfill liner condition was obtained when the ratio of CMDS: bentonite: cement was 1: 0.5: 0.3 in a lab-scale. The relative compaction was measured in 90.1%, which results for construction field have been generally acceptable. In this study, a large-scale Lysimeter($1.0m{\times}1.5m{\times}2.0m$) was used to simulate the effects of the layer on the freeze/thaw by -20 average temperature. The mixture after freezing/thawing showed compressive strength more than $5kg/cm^2$, which was satisfied with EPA standards. Initial permeability of CMDS was $7.10{\times}10^{-7}cm/s$ and permeability its mixture after freezing/thawing was increased to $9.80{\times}10^{-7}cm/s$. The change of temperature in the layers rises and falls with linear and temperature gradient keep maintain the present state. Moisture contents in the layers have not been radically changed. Through the leaching test determined by KSLT method, it was found that heavy metals excluding Zn and Ni were not leached out or leached out less than the standards during 7 cycles of freezing/thawing process. Since it shows the increased permeability about 1.5 times and slight change in moisture content, but it was satisfied with EPA standar through 7 cycles of freezing/thawing process, this mixture can be applied as a liner in landfill final cover system.

Evaluation of Construction Operation and Design Properties of CLSM for Corrugated Pipe in Underground (파형강관을 이용한 지하매설물용 뒤채움재 설계 및 시공성 평가)

  • Lee Kwan-Ho;Park Jae-Heon
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.63-74
    • /
    • 2006
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the full-scaled field test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM. From the full-scaled test in field, the use of in-situ CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the ground surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was the smaller than the other cases, and the absolute value was almost zero. Judging from the full-scaled field test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing the failure of the underground pipes.

  • PDF

A Study on the Leakage Protection with Polypropylene Mat in Irrigation Canal (Polypropylene Mat에 의(依)한 용수로(用水路)의 누수방지(漏水防止)에 관(關)한 연구(硏究))

  • Kang, Sin-Up;Kang, Yea-Mook;Cho, Seung-Seup
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.166-184
    • /
    • 1979
  • In order to prevent the water loss in the irrigation canal constructed on the sandy gravel layer or on the other highly permeable ground layer, lining has been practiced. Many studies have been done so far on the lining method to prevent the water loss in the irrigation canal and recently studies on the lining with plastic film or polyethylene film were also reported. However, the plastic film or polyethylene film has low strength and is liable to break, and water loss from pin hole caused by contacting with sand or gravel is highly predicted. This study was then conducted to find proper lining and buring method in canal construction of polypropylene mat after coated with vinyl, as one way to overcome the shortcoming frequently observed when plastic or usual polyehtylene film were used. Eventhough rather longer periods of experiments are needed to attain reliable and accurate results on the variation of durability, the durability of asphalt coated area, or on the damage due to freeze after burial or exposure of polypropylene mat, the experiemental results obtained during one year of period are summarized as follows: 1. The curvature at the area between canal bottom and side slope had increased stability and saved consruction cost. The relationship among the variation of curvature, the reduction of polypropylene mat and the reduced amount of soil cutting at each side slope was presented in Fig. 7 through 9. 2. The depth of covering material to protect polypropylene mat was desired to be over 30cm, considering the water depth, side slope, canal cleaning practices, traffic, or back pressure of irrigation period. 3. In order to increase the canal stability and to prevent slope erosion, sandy soil was required, to be placed under ground, and coarse gravel should cover the surface area of canal. 4. The studies on the stability of side slope in the canal should consider the passive area on the bottom and the slope should be about 1 to 2, considering the slope stability, allowable velocity and tractive force. 5. When compared with earth lining, the lining with polypropylene mat coated with vinyl was responsible to save 28% and 37% of canal lining cost, when the soil carrying distances were 500 and 700m. respectively. 6. The water interception was almost completely attained when the polypropylene mat coated with vinyl was used for lining. But further studies were assumed to be necessary for the use of asphalt since the strength of polypropylene mat connected with asphalt will vary with duration.

  • PDF

A study on the fixation of heavy metals with modified soils in the landfill liner (개량혼합토를 이용한 폐기물 매립지 차수층의 중금속 고정능력에 관한 연구)

  • 노회정;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.63-71
    • /
    • 2002
  • The authors selected the modified soil method, and then performed the geotechnical and environmental laboratory test, and evaluated whether the modified soil liner could be accepted as a barrier layer in landfill. Unlike the results of the natural soil(CL), those of the hydraulic conductivity test of stabilized soil met the standard value. According to these results, the optimal mixing ratio of a mixture(cement : bentonite : stabilizing agent) was 90 : 60 : 1 with mass ratio(kg) for 1㎥ with soil, and it was possible to use poor quality bentonite. B\circled2 because of a little difference from results with high quality bentonite. B\circled1. The Cation Exchange Capacity(CEC) of the modified soil was increased about 1.5 times compared with the natural soil; however. the change of CEC with a sort of additives was not detected. In order to observe the change of the chemical components and crystal structures, the natural and the modified soils with the sorts of additives were measured by the XRF(X-Ray Flourescence Spectrometer) and SEM, but there was no significant change. The artificial leachate with the heavy meals ($Pb^{2+}$ , $Cu^{2+}$, $Cd^{2+}$ Zn$^{2+}$ 100mg/L) was passed through the natural soil and modified soils in columns. In the natural soil, Cd$^{2+}$ and $Zn^{2+}$ were identified, simultaneously the pH of outflow was lower, and then came to the breakthrough point. The removal efficiency of the natural soil was showed in order of following : $Pb^{2+}$$Cu^{2+}$ > $Zn^{2+}$ > $Cd^{2+}$ On the other hand, modified soils were not showed the breakthrough condition like the result of the natural soil. The modified soil with the lower quality bentonite, B\circled2(column3) was more stable with respect to chemical attack than that with the higher bentonite, B\circled1(column2) because the change range of outflow pH in columns was less than that of outflow pH in column2. In addition, the case of adding the stabilizing agent(column4) was markedly showed the phenomena.ena.

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.

A Study The Structural Stability of the Fence Ohgokmun Soswaewon Factor Analysis (소쇄원 오곡문 담장의 구조적 안정에 미치는 요인 분석)

  • Jang, Ik-Sik;Jeon, Hyeong-Soon;Ha, Tae Ju;Lee, Jae-Keun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.4
    • /
    • pp.113-122
    • /
    • 2013
  • In this study, the traditional structure of the impact on the stability analysis. Korean traditional landscape architecture column space of stonework stable composition as the foundation of the fence for a long time been known to fall down and not maintained. The destination of research Ohgokmun Damyang Soswaewon fence which is in harmony with nature is one of the traditional structures that affect its shape without being kept so far came true. This includes our ancestral wisdom and that wisdom can guess guesswork. But I let the traditional reproduction incidence structures frequently. This deviation from the traditional method of construction application of shorthand stand. Thus, the subject of this study, the factors that do not fall down fences Ohgokmun solution is to indirectly gain the weak. In addition, epidemiological studies and the methods of calculation of the inferred physical examination, the results of the analysis were derived through the following. First, the internal factors of the fence Ohgokmun constituting the structural member and the coupling of the scheme. 1) based on stable ground. Greater role in the country rock The fact that the settlement will have no symptoms. 2) to minimize the friction caused by hydrological water to remove the two-pronged process through stone work building form and menu sustaining power in hydrology and flooding made against the bypass channel. 3) due to the load bearing capacity and durability to withstand the strength of the material and the construction of structures in the form of a dispersion of power between each individual to maximize the process of getting traction was applied. Second, external factors Ohgokmun fence the results obtained through the calculation of the dynamics of repair, is greatly affected by the wind and the water gate of the fence, but the action of the structural stability of the lack of power that hurt enough conclusion. In this study, the results of the structure of internal and external influence as well through the structure can be viewed as composed consisting. However, over the next follow-up in terms of climate and environmental factors due to the fact that the fall might.

A re-appraisal of scoring items in state assessment of NATM tunnel considering influencing factors causing longitudinal cracks (종방향균열 영향인자 분석을 통한 NATM터널 정밀안전진단 상태평가 항목의 재검토)

  • Choo, Jin-Ho;Yoo, Chang-Kyoon;Oh, Young-Chul;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.479-499
    • /
    • 2019
  • State assessment of an operational tunnel is usually done by performing visual inspection and durability tests by following the detailed guideline for safety inspection (SI) and/ or precision inspection for safety and diagnosis (PISD). In this study, 12 NATM tunnels, which have been operational for more than 10 years, were inspected to figure out the cause of longitudinal cracks for the purpose of modifying the scoring items in the state assessment NATM tunnel related to the longitudinal crack and the thickness of concrete lining. All investigated tunnels were classified into four groups depending on the shape and usage of each tunnel. The causes of longitudinal crack occurrence were analyzed by investigating the correlations between the longitudinal crack and the following four factors: the patterns of ground excavation; construction state of primary support system; characteristics of material properties of the concrete lining; and thickness of lining which was obtained by Ground Penetration Radar (GPR) tests. It was found that influencing factors causing longitudinal cracks in the lining were closely related with the construction condition of the primary support system, i.e. shotcrete, rockbolt, and steel-rib; crack occurrences were not much affected by the excavation patterns. As for the properties of concrete lining materials, occurrence of the longitudinal crack was mostly affected by the following three items: w/c ratio; contents of cement; and strength of lining. When estimating the lining thickness of the concrete lining by GPR tests and taking thickness effect into account in the statement assessment, it was concluded that increase of the index score by an average of 0.03 (ranging from 0.01 up to 0.071) is needed; a more realistic way of state assessment should be proposed in which the increased index score caused by lack of lining thickness should be taken into account.

Numerical Analyses for Evaluating Factors which Influence the Behavioral Characteristics of Side of Rock Socketed Drilled Shafts (암반에 근입된 현장타설말뚝의 주면부 거동에 영향을 미치는 변수분석을 위한 수치해석)

  • Lee, Hyuk-Jin;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.395-406
    • /
    • 2006
  • Drilled shafts are a common foundation solution for large concentrated loads. Such piles are generally constructed by drilling through softer soils into rock and the section of the shaft which is drilled through rock contributes most of the load bearing capacity. Drilled shafts derive their bearing capacity from both shaft and base resistance components. The length and diameter of the rock socket must be sufficient to carry the loads imposed on the pile safely without excessive settlements. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. The shaft resistance only is concerned in this study. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by the construction practices. In this study, the influences of asperity characteristics such as the heights and angles, the strength characteristics and elastic constants of surrounding rock masses and the depth and length of rock socket, et. al. on the shaft resistance of drilled shafts are investigated from elasto-plastic analyses( FLAC). Through the parametric studies, among the parameters, the vertical stress on the top layer of socket, the height of asperity and cohesion and poison's ratio of rock masses are major influence factors on the unit peak shaft resistance.