• Title/Summary/Keyword: 지르코니아 나노튜브

Search Result 3, Processing Time 0.018 seconds

The novel Fabrication method of the metal oxide nanotube on template using atomic layer deposition (템플레이트에서 원자층 증착기술을 이용한 금속산화물 나노튜브의 제작방법)

  • 정대균;박노헌;성명모;이재갑;신현정;김지영
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.123-123
    • /
    • 2003
  • 나노튜브는 반도체 재료로서 뿐만 아니라 다른 분야로까지 다양한 응용범위를 가진 물질로서 기존에는 주의 탄소를 사용하여 제작, 사용되어지고 있으나 게이트옥사이드(Gate Oxide) 물질인 지르코니아(ZrO$_2$), 타이타니아(TiO2$_2$) 등을 이용한 나노튜브는 많이 제작되어지고 있지 못하다. 따라서 보다 나은 성질을 갖는 물질로서 나노튜브를 제작할 시 반도체 재료에서의 고집적화를 통해 좋은 성질을 갖게 할 수 있으며 여러 분야로까지 확대가 가능한 재료를 사용하여 광학 및 환경분야 등 응용범위를 넓힐 수 있다. 본 실험은 나노튜브 제작에 있어서 템플레이트의 구멍 내부를 ALD 기술을 이용하여 균일한 두께를 갖는 금속 산화물층을 성장시킨 후 템플레이트 재료의 식각을 통해 금속산화물 나노튜브가 남아있게 하여 제작하는 방법이다.

  • PDF

Syngas and Hydrogen Production under concentrated solar radiation : Redox system of $ZrO_2$ nano-structure (고온 태양열을 이용한 합성가스 및 수소 생산 : $ZrO_2$ 나노 구조화에 따른 산화/환원 특성)

  • Jang, Jong-Tak;Lee, Jong-Min;Cho, Eun-Su;Yang, Seung-Chan;Yoon, Ki-June;Han, Gui-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.463-469
    • /
    • 2012
  • Solar thermochemical syngas and hydrogen production process bv redox system of metal oxide was performed under direct irradiation of the metal oxide on the SiC ceramic foam device using solar simulator. $CeO_2/ZrO_2$ nanotube has been synthesized by anodic oxidation method. Syngas and hydrogen production process is one of the promising chemical pathway for storage and transportation of solar heat by converting solar energy to chemical energy. The produced syngas had the $H_2/CO$ ratio of 2, which was suitable for methanol synthesis or Fischer-Tropsch synthesis process. After ten cycles of redox reaction, $CeO_2$ was analyzed using XRD pattern and SEM image in order to characterize the physical and chemical change of metal oxide at the high temperature.

  • PDF

Analysis of Mechanical and Thermal Properties of Epoxy Complex using Zirconia Supported Halloysite Nanotubes as Filler (지르코니아를 담지한 할로이사이트 나노튜브를 충진재로 이용한 에폭시 복합체의 기계적 열적 특성 분석)

  • Kim, Moon-Il
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.461-466
    • /
    • 2022
  • Epoxy resins are widely used in various industrial fields. However, they suffer from brittleness, an issue that must be addressed for further applications. To solve this problem, additional fillers are needed to improve the mechanical and thermal properties of the resins; zirconia is one such filler. However, it has been reported that aggregation may occur in the epoxy composites as the amount of zirconia increases, preventing enhancement of the mechanical strength of the epoxy composites. Herein, to reduce the aggregation, zirconia was well dispersed on halloysite nanotubes (HNTs), which have high thermal and mechanical strength, by a conventional wet impregnation method using zirconyl chloride octahydrate as a precursor. The mechanical and thermal strengths of the epoxy composites with The zirconia impregnated HNTs (Zr/HNT) were investigated. Zr/HNT were characterized by Scanning electron microscope (SEM), transmittance electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy. The thermal strength of the epoxy composites was studied by thermomechanical analysis (TMA) and the mechanical strength of the epoxy composites (flexural strength) was studied by using a universal testing machine (UTM). The mechanical and thermal strengths of the epoxy complex with Zr/HNT were improved compared to those of the epoxy complex with HNT, and also increased as the content of Zr/HNT increased.