• Title/Summary/Keyword: 지뢰

Search Result 85, Processing Time 0.021 seconds

Ground Penetrating Radar based Hand-held Landmine Detection System using Frequency Shifting Filtering (주파수 이동 필터링을 적용한 지면 투과 레이더 기반 휴대용 지뢰 탐지 시스템)

  • Hahm, Jong-Hun;Kim, Min Ju;Heo, Eun Doo;Kim, Seong-Dae;Kim, Dong Hyun;Choi, Soon-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.74-84
    • /
    • 2017
  • Since a soldier manages a hand-held landmine detector by hands, it is necessary to develop a system that can detect the target quickly and accurately. However, the hand-held landmine detector used in Korea has a problem that it can only detect the metal mines. Therefore, it is important to solve the problem and to develop a hand-held landmine detection system suitable for the Korean environment. In this paper, we propose a hand-held landmine detection system suitable for the Korean environment using ground penetrating radar. The proposed system uses depth compensation, matched filtering, and frequency shifting filtering for preprocessing. Then, in the detection step, the system detects the target using the edge ratio. In order to evaluate the proposed system, we buried landmines in sandy loam which is most of the soil in Korea and obtained a set of ground penetrating radar data by using a hand-held landmine detector. By using the obtained data, we carried out some experiments on the size and position of the patch and the shifting frequency to find the optimal parameter values and measured the detection performance using the optimized values. Experimental results show that the proposed preprocessing algorithms are suitable for detecting all landmines at low false alarm rate and the performance of the proposed system is superior to that of previous works.

Modeling Scheme for Calculating Encounter Probability Versus Minefleld Density (지뢰지대 밀도별 접촉확률 산정 모델링 방안)

  • Baek, Doo-Hyeon;Lee, Sang-Heon
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.2
    • /
    • pp.77-86
    • /
    • 2009
  • The encounter probability graph is measured by the chance(in percent) that a vehicle, blindly moving through a minefield, will detonate a mine. The encounter probability graph versus minefield density is presented in ROK and US Army field manual but this graph is baseless because these data had not been presented as those of live mobility or wargame. In this paper, we verified this graph building procedure model as using computer program. The result values of program are almost like those of graph. Therefore this model for our to suggest have validation, verification that a modeling demand and we convince that this model will be useful for calculating encounter probability of multiple vehicles.

지뢰탐지 센서의 기술동향(3)

  • Lee, Jun-Ung
    • Defense and Technology
    • /
    • no.9 s.295
    • /
    • pp.28-39
    • /
    • 2003
  • 우리 나라는 남-북 대치하고 있는 특수한 상황 때문에 '대인지뢰 금지협약'에도 가입하고 있지 않고, 그 결과 우리 정부 당국자는 물론 과학계에서도 지뢰제거와 관련된 기술개발에 전혀 관심을 보이지 않고 있는 실정이다. 어느 때고 닥칠 수 있는 남-북 통일이 현실화되면, 그야말로 막대한 경비와 장시간이 소요되고 그로 인한 불가피한 인명피해는 물론 방대한 토지를 장시간 활용하지 못하는데서 오는 경제적인 손실 등으로 인해 통일한국을 건설하는 데 있어서 커다란 걸림돌이 될 가능성이 높다.

  • PDF

Deep-Learning-Based Mine Detection Using Simulated Data (시뮬레이션 데이터 기반으로 학습된 딥러닝 모델을 활용한 지뢰식별연구)

  • Buhwan Jeon;Chunju Lee
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.4
    • /
    • pp.16-21
    • /
    • 2023
  • Although the global number of landmines is on a declining trend, the damages caused by previously buried landmines persist. In light of this, the present study contemplates solutions to issues and constraints that may arise due to the improvement of mine detection equipment and the reduction in the number of future soldiers. Current mine detectors lack data storage capabilities, posing limitations on data collection for research purposes. Additionally, practical data collection in real-world environments demands substantial time and manpower. Therefore, in this study, gprMax simulation was utilized to generate data. The lightweight CNN-based model, MobileNet, was trained and validated with real data, achieving a high identification rate of 97.35%. Consequently, the potential integration of technologies such as deep learning and simulation into geographical detection equipment is highlighted, offering a pathway to address potential future challenges. The study aims to somewhat alleviate these issues and anticipates contributing to the development of our military capabilities in becoming a future scientific and technological force.

  • PDF

A Preprocessing Method for Ground-Penetrating-Radar based Land-mine Detection System (지면 투과 레이더(GPR) 기반의 지뢰 탐지 시스템을 위한 표적 후보 검출 기법)

  • Kong, Hae Jung;Kim, Seong Dae;Kim, Minju;Han, Seung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.171-181
    • /
    • 2013
  • Recently, ground penetrating radar(GPR) has been widely used in detecting metallic and nonmetallic buried landmines and a number of related researches have been reported. A novel preprocessing method is proposed in this paper to flag potential locations of buried mine-like objects from GPR array measurements. GPR operates by measuring the reflection of an electromagnetic pulse from discontinuities in subsurface dielectric properties. As the GPR pulse propagates in the geologic medium, it suffers nonlinear attenuation as the result of absorption and dispersion, besides spherical divergence. In the proposed algorithm, a logarithmic transformed regression model which successfully represents the time-varying signal amplitude of the GPR data is estimated at first. Then, background signals may be densely distributed near the regression model and candidate signals of targets may be far away from the regression model in the time-amplitude space. Based on the observation, GPR signals are decomposed into candidate signals of targets and background signals using residuals computed from the estimated value by regression and the measurement of GPR. Candidate signals which may contain target signals and noise signals need to be refined. Finally, targets are detected through the refinement of candidate signals based on geometric signatures of mine-like objects. Our algorithm is evaluated using real GPR data obtained from indoor controlled environment and the experimental results demonstrate remarkable performance of our mine-like object detection method.

A Study on Apparatus of Smart Wearable for Mine Detection (스마트 웨어러블 지뢰탐지 장치 연구)

  • Kim, Chi-Wook;Koo, Kyong-Wan;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.263-267
    • /
    • 2015
  • current mine detector can't division the section if it is conducted and it needs too much labor force and time. in addition to, if the user don't move the head of sensor in regular speed or move it too fast, it is hard to detect a mine exactly. according to this, to improve the problem using one direction ultrasonic wave sensing signal, that is made up of human body antenna part, main micro processor unit part, smart glasses part, body equipped LCD monitor part, wireless data transmit part, belt type power supply part, black box type camera, Security Communication headset. the user can equip this at head, body, arm, waist and leg in removable type. so it is able to detect the powder in a 360-degree on(under) the ground whether it is metal or nonmetal and it can express the 2D or 3D film about distance, form and material of the mine. so the battle combats can avoid the mine and move fast. also, through the portable battery and twin self power supply system of the power supply part, combat troops can fight without extra recharge and we can monitoring the battle situation of distant place at the command center server on real-time. and then, it makes able to sharing the information of battle among battle combats one on one. as a result, the purpose of this study is researching a smart wearable mine detector which can establish a smart battle system as if the commander is in the site of the battle.

A Study on Analysis and Improvement of Current Korean Army's Mine Detector (한국 군 운용 지뢰 탐지기 현실태 분석 및 개선 방안 연구)

  • Kim, Chi-Wook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.229-233
    • /
    • 2013
  • Mine detector of troops is different from other equipments. It is a base of a miner branch's combat, combat support and mission. But its notion is too obsucure and each troops' model and maker of it is so different and most of it is old type so there are a lot of malfunctions. Hence, I will define management of mine detector and figure out these days miner troops' mine detector situation. I will collect experts' opinions too. Through a discussion we could found improvement plan and develop it adequate for future operational environment. Proceeding all these courses and finally making it weaponize are the points of this writing.

Numerical Analysis of the Ground Penetrating Radar's Return Signal for Mine Detection at Various Frequencies and Soil Conditions (다양한 주파수 및 토양 조건에서 지뢰 탐지용 지표투과레이더 수신신호의 수치해석)

  • Hong, Jin-Young;Ju, Jung-Mung;Han, Seung-Hoon;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1412-1415
    • /
    • 2012
  • Return signals of a ground penetrating radar(GPR) for mine detection at various frequencies and soil moisture contents are analyzed in this paper. We first compute the dielectric constant, conductivity and attenuation loss based on clay loam which is Korea standard soil. The mine-detection images of GPR at various frequencies are also obtained using the finite-difference time-domain(FDTD) technique. Then, the signal-to-clutter ratio(SCR) and received power of the radar are studied. It is shown that the variable frequency channels are suitable for a GPR to detect landmines at various soil conditions.

Clearance Depth Control for the Non-explosive Demining System of a Tracked Mobile Robot (비폭파식 지뢰제거 무한궤도형 주행 로봇의 작업 깊이 제어)

  • Jeong Hae Kwan;Choi Hyun Do;Kim Sang Do;Kwak Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.155-161
    • /
    • 2005
  • Up to now, a lot of unmanned demining systems have been developed. However, some inferiority surely exist by reason of their large platform and explosive mechanism. To settle this inferiority, non-explosive demining system adaptable to a mobile robot already has been developed. Brief experiment indoors showed that developed demining system can remove landmines well. But, out of doors, several problems are detected. In this research, a study on the performance improvement of developed non-explosive demining system is mainly discussed. To overcome downhill effect, mechanical sensor composed of shaft and spring is used. It is confirmed that clearance depth control using the mechanical sensor is a good solution for the inclination of the system.