• Title/Summary/Keyword: 지도 군집화

Search Result 593, Processing Time 0.034 seconds

Guassian pdfs Clustering Using a Divergence Measure-based Neural Network (발산거리 기반의 신경망에 의한 가우시안 확률 밀도 함수의 군집화)

  • 박동철;권오현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.627-631
    • /
    • 2004
  • An efficient algorithm for clustering of GPDFs(Gaussian Probability Density Functions) in a speech recognition model is proposed in this paper. The proposed algorithm is based on CNN with the divergence as its distance measure and is applied to a speech recognition. The algorithm is compared with conventional Dk-means(Divergence-based k-means) algorithm in CDHMM(Continuous Density Hidden Markov Model). The results show that it can reduce about 31.3% of GPDFs over Dk-means algorithm without suffering any recognition performance. When compared with the case that no clustering is employed and full GPDFs are used, the proposed algorithm can save about 61.8% of GPDFs while preserving the recognition performance.

Digital Forensics for Android Location Information using Hierarchical Clustering (계층적 군집화를 이용한 안드로이드 위치정보에 대한 디지털 포렌식)

  • Son, Youngjun;Chung, Mokdong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.143-151
    • /
    • 2014
  • Recently, as smartphones are widespread, a variety of user's information is created and managed in smartphones. Especially the location information can show the user's position at a specific time and the user's area of interest, which could be very useful during criminal investigation. Although the location information plays an important role in solving the crimes such as serial murder, rape and arson cases, there is a lack of research on location information for digital forensics. In this paper, we analyze the location information from logs, images, and applications on android, and we suggest the integrated model for analyzing location information. The proposed model may be useful in criminal investigation by improving the efficiency of data analysis and providing information about a criminal case.

Clustering Character Tendencies found in the User Log of a Story Database Service and Analysis of Character Types (스토리 검색 서비스의 사용자 기록에 나타난 인물 성향 군집화 및 유형 분석)

  • Kim, Myoung-Jun
    • Journal of Digital Contents Society
    • /
    • v.17 no.5
    • /
    • pp.383-390
    • /
    • 2016
  • is a service providing story synopses that match user's query. This paper presents a classification of character types by clustering of character tendencies found in the user log of . We also present a visualization method of showing genre-action relationships to each character type, and investigate the genre-action relationships of the major character types. We found that a small number of character types can represent more than half of the character tendencies and the character types tend to have a relationship to particular genres and actions. According to this properties, it would be desirable to provide supports for creative writing classified by character types.

Context-aware Recommendation System for Water Resources Distribution in Smart Water Grids (스마트 워터 그리드(Smart Water Grid) 수자원 분배를 위한 컨텍스트 인지 추천시스템)

  • Yang, Qinghai;Kwak, Kyung Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.80-89
    • /
    • 2014
  • In this paper, we conceive a context-aware recommendations system for water distribution in future smart water grids, with taking the end users' profiles, water types, network conditions into account. A spectral clustering approach is developed to cluster end users into different communities, based on the end users' common interests in water resources. A back-propagation (BP) neural network is designed to obtain the rating list of the end users' preferences on water resources and the water resource with the highest prediction rating is recommended to the end users. Simulation results demonstrate that the proposed scheme achieves the improved accuracy of recommendation within 2.5% errors notably together with a better user experience in contrast to traditional recommendations approaches.

Anomaly Detection Method Based on The False-Positive Control (과탐지를 제어하는 이상행위 탐지 방법)

  • 조혁현;정희택;김민수;노봉남
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.4
    • /
    • pp.151-159
    • /
    • 2003
  • Internet as being generalized, intrusion detection system is needed to protect computer system from intrusions synthetically. We propose an intrusion detection method to identify and control the contradiction on self-explanation that happen at profiling process of anomaly detection methodology. Because many patterns can be created on profiling process with association method, we present effective application plan through clustering for rules. Finally, we propose similarity function to decide whether anomaly action or not for user pattern using clustered pattern database.

Fast K-Means Clustering Algorithm using Prediction Data (예측 데이터를 이용한 빠른 K-Means 알고리즘)

  • Jee, Tae-Chang;Lee, Hyun-Jin;Lee, Yill-Byung
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.106-114
    • /
    • 2009
  • In this paper we proposed a fast method for a K-Means Clustering algorithm. The main characteristic of this method is that it uses precalculated data which possibility of change is high in order to speed up the algorithm. When calculating distance to cluster centre at each stage to assign nearest prototype in the clustering algorithm, it could reduce overall computation time by selecting only those data with possibility of change in cluster is high. Calculation time is reduced by using the distance information produced by K-Means algorithm when computing expected input data whose cluster may change, and by using such distance information the algorithm could be less affected by the number of dimensions. The proposed method was compared with original K-Means method - Lloyd's and the improved method KMHybrid. We show that our proposed method significantly outperforms in computation speed than Lloyd's and KMHybrid when using large size data which has large amount of data, great many dimensions and large number of clusters.

Selection of An Initial Training Set for Active Learning Using Cluster-Based Sampling (능동적 학습을 위한 군집기반 초기훈련집합 선정)

  • 강재호;류광렬;권혁철
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.859-868
    • /
    • 2004
  • We propose a method of selecting initial training examples for active learning so that it can reach high accuracy faster with fewer further queries. Our method is based on the assumption that an active learner can reach higher performance when given an initial training set consisting of diverse and typical examples rather than similar and special ones. To obtain a good initial training set, we first cluster examples by using k-means clustering algorithm to find groups of similar examples. Then, a representative example, which is the closest example to the cluster's centroid, is selected from each cluster. After these representative examples are labeled by querying to the user for their categories, they can be used as initial training examples. We also suggest a method of using the centroids as initial training examples by labeling them with categories of corresponding representative examples. Experiments with various text data sets have shown that the active learner starting from the initial training set selected by our method reaches higher accuracy faster than that starting from randomly generated initial training set.

A Resource Clustering Method Considering Weight of Application Characteristic in Hybrid Cloud Environment (하이브리드 클라우드 환경에서의 응용 특성 가중치를 고려한 자원 군집화 기법)

  • Oh, Yoori;Kim, Yoonhee
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.8
    • /
    • pp.481-486
    • /
    • 2017
  • There are many scientists who want to perform experiments in a cloud environment, and pay-per-use services allow scientists to pay only for cloud services that they need. However, it is difficult for scientists to select a suitable set of resources since those resources are comprised of various characteristics. Therefore, classification is needed to support the effective utilization of cloud resources. Thus, a dynamic resource clustering method is needed to reflect the characteristics of the application that scientists want to execute. This paper proposes a resource clustering analysis method that takes into account the characteristics of an application in a hybrid cloud environment. The resource clustering analysis applies a Self-Organizing Map and K-means algorithm to dynamically cluster similar resources. The results of the experiment indicate that the proposed method can classify a similar resource cluster by reflecting the application characteristics.

Sparse Web Data Analysis Using MCMC Missing Value Imputation and PCA Plot-based SOM (MCMC 결측치 대체와 주성분 산점도 기반의 SOM을 이용한 희소한 웹 데이터 분석)

  • Jun, Sung-Hae;Oh, Kyung-Whan
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.277-282
    • /
    • 2003
  • The knowledge discovery from web has been studied in many researches. There are some difficulties using web log for training data on efficient information predictive models. In this paper, we studied on the method to eliminate sparseness from web log data and to perform web user clustering. Using missing value imputation by Bayesian inference of MCMC, the sparseness of web data is removed. And web user clustering is performed using self organizing maps based on 3-D plot by principal component. Finally, using KDD Cup data, our experimental results were shown the problem solving process and the performance evaluation.

Reading Children's Mind from Digital Drawings based on Dominant Color Analysis using ART2 Clustering and Fuzzy Logic (ART2 군집화와 퍼지 논리를 이용한 디지털 그림의 색채 주조색 분석에 의한 아동 심리 분석)

  • Kim, Kwang-baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1203-1208
    • /
    • 2016
  • For young children who are not spontaneous or not accurate in verbal communication of their emotions and experiences, drawing is a good means of expressing their status in mind and thus drawing analysis with chromatics is a traditional tool for art therapy. Recently, children enjoy digital drawing via painting tools thus there is a growing needs to develop an automatic digital drawing analysis tool based on chromatics and art therapy theory. In this paper, we propose such an analyzing tool based on dominant color analysis. Technically, we use ART2 clustering and fuzzy logic to understand the fuzziness of subjects' status of mind expressed in their digital drawings. The frequency of color usage is fuzzified with respect to the membership functions. After applying fuzzy logic to this fuzzified central vector, we determine the dominant color and supporting colors from the digital drawings and children's status of mind is then analyzed according to the color-personality relationships based on Alschuler and Hattwick's historical researches.