Journal of the Korean Institute of Intelligent Systems
/
v.16
no.3
/
pp.275-284
/
2006
This paper deals with problems of safe and efficient navigation algorithm for autonomous mobile robots in unknown environments. Since the obstacle avoidance algorithms are very important in mobile robot navigation, two obstacle avoidance algorithms: VFH(vector field histogram) algorithm and a fuzzy algorithm are combined to have optimal performance in various environments. And a upper-level supervisor is to select the proper one from VFH algorithm and the fuzzy algorithm according to the situations the robot faces. Computer simulation results show the effectiveness of the proposed navigation algorithm for autonomous mobile robots.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.11a
/
pp.99-101
/
2000
DNA 컴퓨팅 기법은 실제 생체 분자(bio-molecule)를 계산의 도구로 사용하는 새로운 계산 방법으로, 진화 연산과 결합하여 인공지능의 새로운 분야로 부각되고 있다. 그러나, 실제 생체 분자를 계산의 도구로 사용하기 때문에 기존의 컴퓨터에 적용하기 어렵고, 단순히 합성과 분리라는 간단한 방법으로 해를 구하기 때문에 보다 효과적인 알고리즘을 개발하여야 할 필요성이 있다. 따라서, 본 논문에서는 DNA 컴퓨팅 기법을 컴퓨터에 적용하기 위한 방법으로 DNA 컴퓨팅에서의 코드 합성 기법과 유전자 알고리즘을 이용하여 NP-complete 문제중의 하나인 Sub-Set Sum 문제를 해결하여 그 결과를 분석한다. Sub-Set Sum 문제에서 단순 유전자 알고리듬보다 DNA 코드 유전자 알고리즘이 높은 성능을 보인다.
Journal of the Korean Society for information Management
/
v.17
no.2
/
pp.189-205
/
2000
We investigate the appropriate design and implementation of an Inductive Learning Alogrithm with a Neural Network in order to solve both inconsistent indexing and incomplete query problems on the web. Specifically, the proposed system based queries and documents in the field of Mathematics shows how inductive learning method and neural networks can apply to information retreival. Also, this study examines all of parameters of the neural networks -- the number of node in input and output, hidden layer size and learning parameters etc. -- which are significant in determining how well the neural network will converge.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.377-380
/
2004
본 논문에서는 기존의 교통 상황 검지 장비들이 가지고 있는 문제점들을 해결하기 위해 실제 통행속도 데이터의 해당 도로 속성들을 이용하여 데이터 마이닝을 통한 합리적인 오차범위 내에서의 실시간 교통 정보 예측 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘은 데이터 파이닝의 분석 기법중 하나인 신경망(Neural Network)분석을 통하여 통행 속도 예측 근사 모델을 개발하는 것이며, 기존의 교통 상황 판단 알고리즘과의 결과 비교를 통해 비용 절감 효과와 속도 정보가 없는 도로까지의 합리적인 통행 속도 예측, 그리고 Off line상에서의 시간대별 교통 정보 제공이 가능함을 보인다.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.34-36
/
2012
가스시설물의 안전관리는 개별적 위험인자를 전문가가 통계적인 기준을 적용하여 위험 상황을 분석하고 있다. 또한 개별적 위험인자를 모니터링하는 안전관리 시스템 등이 현업에 적용되고 있지만 위험인자들을 종합적으로 검토하고 통계적 모델의 제한성 때문에 다양한 가스안전관리에 적용되는 방법이 필요하다. 본 논문은 종합적으로 가스시설의 위험인자를 고려하면서 다양한 가스안전관리에 효과적으로 적용되는 지능형 위험패턴 분석 알고리즘을 제시하고 알고리즘이 효과적으로 사용되기 위한 도구를 구현하는 것이 목적이다. 이를 위해 ESSOM기반 지능형 위험패턴 분석 알고리즘을 제시하며, 데이터 생성기, 데이터 필터 및 가시화 모듈이 탑재된 분석도구를 개발하였다.
본 논문에서는 진단부분에서 서버를 중심으로 받은 정보를 능동적으로 해석하고 이상 유무에 따른 차단 역할 수행하도록 하는 지능형 차단 시스템에 대한 알고리즘 개발을 목표로 하고 있다. 제안하고자 하는 분류 알고리즘이란, 저압 배선에서 받은 신호에 대한 해석과 더불어 이를 각 이상 정도에 따라 분류하는 것을 말한다. 일반적으로, TFDR을 통해 알아 낼 수 있는 이상 유무의 종류는 damage, open 그리고 short 등이다. 도선 이상의 종류 및 특성에 따른 분류를 위하여, 알고리즘 개발을 위한 사전 이론 조사 및 개요 구성을 목표로 하고 있다. 또한, 기존의 통신 선 상에서 이루어진 결과를 토대로 한 퍼지 분류 규칙 생성 및 분류 알고리즘 개발 역시 앞으로 수행 될 예정이며, 이를 통한 지능형 차단 시스템 구축이 최종 목표이다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.550-552
/
2004
가상공간에는 PC(Playerable Character), NPC(Non-Playerable Character)등의 동적 객체와 건물, 지형 등의 정적 객체들이 존재하게 된다. 동적 객체들의 경우, 현실감을 위해 인공지능이 자주 이용된다 현재까지 인공지능에 대한 연구는 유한상태기계(Finite State Machine. FSM). 학습 알고리즘, 유전자 알고리즘, 신경망 알고리즘 등을 중심으로 진행되어 왔다. 이중 유한상태기계는 비교적 알고리즘이 간단하고, 시스템의 부담이 적어 간단한 객체의 인공지능으로 가장 널리 사용되고 있다. 본 논문은 유찬상태기계를 확장하여 모드변경(Mode Change)과 그룹행동을 보여줄 수 있는 XML을 활용한 FSM 시스템을 제안한다. 여기서 모드변경이란 하나의 행동 패턴에서 다른 행동 패턴으로 변경하는 것을, 그룹행동은 여러 객체가 함께 행동하는 Flocking기법을 지칭한파. 이러한 XML을 활용한 FSM 시스템은 다양한 패턴의 정의는 물론, 객체의 상태 정의 및 수정, 확장이 용이하여, 다양한 응용 분야에서 활용될 수 있다.
The proof-of-work consensus algorithm used by most blockchains is causing a massive waste of computing resources in the form of mining. A useful proof-of-work consensus algorithm has been studied to reduce the waste of computing resources in proof-of-work, but there are still resource waste and mining centralization problems when creating blocks. In this paper, the problem of resource waste in block generation was solved by replacing the relatively inefficient computation process for block generation with distributed artificial intelligence model learning. In addition, by providing fair rewards to nodes participating in the learning process, nodes with weak computing power were motivated to participate, and performance similar to the existing centralized AI learning method was maintained. To show the validity of the proposed methodology, we implemented a blockchain network capable of distributed AI learning and experimented with reward distribution through resource verification, and compared the results of the existing centralized learning method and the blockchain distributed AI learning method. In addition, as a future study, the thesis was concluded by suggesting problems and development directions that may occur when expanding the blockchain main network and artificial intelligence model.
현재 국내 항만에서의 작업은 대부분 수작업으로 진행되기 때문에 다양한 안전사고 발생과 시간 및 비용 등의 손실이 우려된다. 이를 해소하고자 최적경로 알고리즘을 이용한 AGV 차량 및 자동화 크레인으로 무인 스마트 항만을 제안한다. RFID 인식으로 컨테이너의 정보를 확인하고, 각 경로의 노드 정보가 담긴 QR 코드 인식을 통해 최적으로 목적지에 달성하는 것이 핵심이다. 본 논문은 이러한 기능으로 시간 및 비용 절감, 효율 상승과 인명피해 및 안전사고 예방을 목표로 한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.177-179
/
2022
In the Google Deepmind Challenge match, Alphago defeated Korea's Sedol Lee (human) with 4 wins and 1 loss in the Go match. Finally, artificial intelligence is going beyond the use of human intelligence. The Korean government's budget for the Digital New Deal is 9 trillion won in 2022, and an additional 301 types of data construction projects for artificial intelligence learning will be secured. From 2023, the industrial paradigm will change with the use and application of learning of artificial intelligence in all fields of industry. This paper conducts research to utilize artificial intelligence algorithms. Focusing on the analysis and judgment of data in artificial intelligence learning, research on the appropriate target and scope of application of algorithms in artificial intelligence machine learning and deep learning learning is conducted. This study will provide basic data for artificial intelligence in the 4th industrial revolution technology and artificial intelligence robot use in the 5th industrial revolution technology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.