• Title/Summary/Keyword: 지능형 도시

Search Result 181, Processing Time 0.024 seconds

Development of a Mid-/Long-term Prediction Algorithm for Traffic Speed Under Foggy Weather Conditions (안개시 도시고속도로 통행속도 중장기 예측 알고리즘 개발)

  • JEONG, Eunbi;OH, Cheol;KIM, Youngho
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.3
    • /
    • pp.256-267
    • /
    • 2015
  • The intelligent transportation systems allow us to have valuable opportunities for collecting wide-area coverage traffic data. The significant efforts have been made in many countries to provide the reliable traffic conditions information such as travel time. This study analyzes the impacts of the fog weather conditions on the traffic stream. Also, a strategy for predicting the long-term traffic speeds is developed under foggy weather conditions. The results show that the average of speed reductions are 2.92kph and 5.36kph under the slight and heavy fog respectively. The best prediction performance is achieved when the previous 45 pattern cases data is used, and the 14.11% of mean absolute percentage error(MAPE) is obtained. The outcomes of this study support the development of more reliable traffic information for providing advanced traffic information service.

Realtime Video Visualization based on 3D GIS (3차원 GIS 기반 실시간 비디오 시각화 기술)

  • Yoon, Chang-Rak;Kim, Hak-Cheol;Kim, Kyung-Ok;Hwang, Chi-Jung
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • 3D GIS(Geographic Information System) processes, analyzes and presents various real-world 3D phenomena by building 3D spatial information of real-world terrain, facilities, etc., and working with visualization technique such as VR(Virtual Reality). It can be applied to such areas as urban management system, traffic information system, environment management system, disaster management system, ocean management system, etc,. In this paper, we propose video visualization technology based on 3D geographic information to provide effectively real-time information in 3D geographic information system and also present methods for establishing 3D building information data. The proposed video visualization system can provide real-time video information based on 3D geographic information by projecting real-time video stream from network video camera onto 3D geographic objects and applying texture-mapping of video frames onto terrain, facilities, etc.. In this paper, we developed sem i-automatic DBM(Digital Building Model) building technique using both aerial im age and LiDAR data for 3D Projective Texture Mapping. 3D geographic information system currently provide static visualization information and the proposed method can replace previous static visualization information with real video information. The proposed method can be used in location-based decision-making system by providing real-time visualization information, and moreover, it can be used to provide intelligent context-aware service based on geographic information.

  • PDF

Determining Priority of Transport Policies with a Focus on Data Envelopment Analysis with Ranked Voting Data (자료포락분석(DEA)을 이용한 교통정책 우선순위 설정에 관한 연구)

  • 홍석진;오재학;하헌구
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.5
    • /
    • pp.49-58
    • /
    • 2003
  • The Transport policies in Korea have been planned and implemented as a part of a larger economy policy based on the achievement of economic growth. As a result, previous transport policies have been focused mostly on the supply of transport infrastructure. The average annual economic growth of six percent and a twelve percent growth in motor vehicles until the late 90s led to the acceleration of the imbalance between the supply and demand of infrastructure. As such, there is a need to establish an innovative transportation policy in order to increase national competitiveness and provide momentum for national growth in the Twenty one century. This research has developed strategies and policies based on interviews that were carried out with specialists in transport field. Moreover, some transport policies have been established for the year 2020 through the conducting of a survey. The survey was conducted by interviewing respondents on making the priority of transport policies. which was then analyzed using the Data Envelopment Analysis with ranked voting data. The results are as follows. The most urgent matter was considered to be the development of a inter-modal transport system, followed by an integrated service system for public transport, and the need to increase the competitiveness of the transport and logistics industries and to further transport safety. Meanwhile, the provision of transportation for disabled people as well as the elderly was considered to be less important in Korea than in welfare nations. This stems from the belief as further attention needs to be paid to the construction of a public transport system, the establishment of transportation networks construction in preparation for reunification and the North-East Asian era, as well as the privatization of the transport infrastructure.

Long Range Forecast of Garlic Productivity over S. Korea Based on Genetic Algorithm and Global Climate Reanalysis Data (전지구 기후 재분석자료 및 인공지능을 활용한 남한의 마늘 생산량 장기예측)

  • Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Kim, Yong Seok;Hur, Jina;Kang, Mingu;Choi, Won Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.391-404
    • /
    • 2021
  • This study developed a long-term prediction model for the potential yield of garlic based on a genetic algorithm (GA) by utilizing global climate reanalysis data. The GA is used for digging the inherent signals from global climate reanalysis data which are both directly and indirectly connected with the garlic yield potential. Our results indicate that both deterministic and probabilistic forecasts reasonably capture the inter-annual variability of crop yields with temporal correlation coefficients significant at 99% confidence level and superior categorical forecast skill with a hit rate of 93.3% for 2 × 2 and 73.3% for 3 × 3 contingency tables. Furthermore, the GA method, which considers linear and non-linear relationships between predictors and predictands, shows superiority of forecast skill in terms of both stability and skill scores compared with linear method. Since our result can predict the potential yield before the start of farming, it is expected to help establish a long-term plan to stabilize the demand and price of agricultural products and prepare countermeasures for possible problems in advance.

Forest Burned Area Detection Using Landsat 8/9 and Sentinel-2 A/B Imagery with Various Indices: A Case Study of Uljin (Landsat 8/9 및 Sentinel-2 A/B를 이용한 울진 산불 피해 탐지: 다양한 지수를 기반으로 다시기 분석)

  • Kim, Byeongcheol;Lee, Kyungil;Park, Seonyoung;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.765-779
    • /
    • 2022
  • This study evaluates the accuracy in identifying the burned area in South Korea using multi-temporal data from Sentinel-2 MSI and Landsat 8/9 OLI. Spectral indices such as the Difference Normalized Burn Ratio (dNBR), Relative Difference Normalized Burn Ratio (RdNBR), and Burned Area Index (BAI) were used to identify the burned area in the March 2022 forest fire in Uljin. Based on the results of six indices, the accuracy to detect the burned area was assessed for four satellites using Sentinel-2 and Landsat 8/9, respectively. Sentinel-2 and Landsat 8/9 produce images every 16 and 10 days, respectively, although it is difficult to acquire clear images due to clouds. Furthermore, using images taken before and after a forest fire to examine the burned area results in a rapid shift because vegetation growth in South Korea began in April, making it difficult to detect. Because Sentinel-2 and Landsat 8/9 images from February to May are based on the same date, this study is able to compare the indices with a relatively high detection accuracy and gets over the temporal resolution limitation. The results of this study are expected to be applied in the development of new indices to detect burned areas and indices that are optimized to detect South Korean forest fires.

Generation of Daily High-resolution Sea Surface Temperature for the Seas around the Korean Peninsula Using Multi-satellite Data and Artificial Intelligence (다종 위성자료와 인공지능 기법을 이용한 한반도 주변 해역의 고해상도 해수면온도 자료 생산)

  • Jung, Sihun;Choo, Minki;Im, Jungho;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.707-723
    • /
    • 2022
  • Although satellite-based sea surface temperature (SST) is advantageous for monitoring large areas, spatiotemporal data gaps frequently occur due to various environmental or mechanical causes. Thus, it is crucial to fill in the gaps to maximize its usability. In this study, daily SST composite fields with a resolution of 4 km were produced through a two-step machine learning approach using polar-orbiting and geostationary satellite SST data. The first step was SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using multi-satellite-derived SST data. The second step improved the reconstructed SST targeting in situ measurements based on light gradient boosting machine (LGBM) to finally produce daily SST composite fields. The DINCAE model was validated using random masks for 50 days, whereas the LGBM model was evaluated using leave-one-year-out cross-validation (LOYOCV). The SST reconstruction accuracy was high, resulting in R2 of 0.98, and a root-mean-square-error (RMSE) of 0.97℃. The accuracy increase by the second step was also high when compared to in situ measurements, resulting in an RMSE decrease of 0.21-0.29℃ and an MAE decrease of 0.17-0.24℃. The SST composite fields generated using all in situ data in this study were comparable with the existing data assimilated SST composite fields. In addition, the LGBM model in the second step greatly reduced the overfitting, which was reported as a limitation in the previous study that used random forest. The spatial distribution of the corrected SST was similar to those of existing high resolution SST composite fields, revealing that spatial details of oceanic phenomena such as fronts, eddies and SST gradients were well simulated. This research demonstrated the potential to produce high resolution seamless SST composite fields using multi-satellite data and artificial intelligence.

Proposal for the Hourglass-based Public Adoption-Linked National R&D Project Performance Evaluation Framework (Hourglass 기반 공공도입연계형 국가연구개발사업 성과평가 프레임워크 제안: 빅데이터 기반 인공지능 도시계획 기술개발 사업 사례를 바탕으로)

  • SeungHa Lee;Daehwan Kim;Kwang Sik Jeong;Keon Chul Park
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.31-39
    • /
    • 2023
  • The purpose of this study is to propose a scientific performance evaluation framework for measuring and managing the overall outcome of complex types of projects that are linked to public demand-based commercialization, such as information system projects and public procurement, in integrated national R&D projects. In the case of integrated national R&D projects that involve multiple research institutes to form a single final product, and in the case of demand-based demonstration and commercialization of the project results, the existing evaluation system that evaluates performance based on the short-term outputs of the detailed tasks comprising the R&D project has limitations in evaluating the mid- and long-term effects and practicality of the integrated research products. (Moreover, as the paradigm of national R&D projects is changing to a mission-oriented one that emphasizes efficiency, there is a need to change the performance evaluation of national R&D projects to focus on the effectiveness and practicality of the results.) In this study, we propose a performance evaluation framework from a structural perspective to evaluate the completeness of each national R&D project from a practical perspective, such as its effectiveness, beyond simple short-term output, by utilizing the Hourglass model. In particular, it presents an integrated performance evaluation framework that links the top-down and bottom-up approaches leading to Tool-System-Service-Effect according to the structure of R&D projects. By applying the proposed detailed evaluation indicators and performance evaluation frame to actual national R&D projects, the validity of the indicators and the effectiveness of the proposed performance evaluation frame were verified, and these results are expected to provide academic, policy, and industrial implications for the performance evaluation system of national R&D projects that emphasize efficiency in the future.

The study of Estimation model for the short-term travel time prediction (단기 통행시간예측 모형 개발에 관한 연구)

  • LEE Seung-jae;KIM Beom-il;Kwon Hyug
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.31-44
    • /
    • 2004
  • The study of Estimation model for the short-term travel time prediction. There is a different solution which has predicted the link travel time to solve this problem. By using this solution, the link travel time is predicted based on link conditions from time to time. The predicated link travel time is used to search the shortest path. Before providing a dynamic shortest path finding, the prediction model should be verified. To verify the prediction model, three models such as Kalman filtering, Stochastic Process, ARIMA. The ARIMA model should adjust optimal parameters according to the traffic conditions. It requires a frequent adjustment process of finding optimal parameters. As a result of these characteristics, It is difficult to use the ARIMA model as a prediction. Kalman Filtering model has a distinguished prediction capability. It is due to the modification of travel time predictive errors in the gaining matrix. As a result of these characteristics, the Kalman Filtering model is likely to have a non-accumulative errors in prediction. Stochastic Process model uses the historical patterns of travel time conditions on links. It if favorably comparable with the other models in the sense of the recurrent travel time condition prediction. As a result, for the travel time estimation, Kalman filtering model is the better estimation model for the short-term estimation, stochastic process is the better for the long-term estimation.

  • PDF

A Study on Network Based Traffic Signal Optimization Using Traffic Prediction Data (교통예측자료 기반 Network 차원의 신호제어 최적화 방안)

  • Han, Jeong-hye;Lee, Seon-Ha;Cheon, Choon-Keun;Oh, Tae-ho;Kim, Eun-Ji
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.77-90
    • /
    • 2015
  • An increasing number of vehicles is causing various traffic problems such as chronic congestion of highways and air pollution. Local governments have been managing traffic by constructing systems such as Intelligent Transport Systems (ITS) and Advanced Traffic Management Systems (ATMS) to relieve such problems, but construction of an infrastructure-based traffic system is insufficient in resolving chronic traffic problems. A more sophisticated system with enhanced operational management capabilities added to the existing facilities is necessary at this point. As traffic patterns of the urban traffic flow is time-specific due to the different vehicle populations throughout the time of the day, a local network-wide signal operation plan that can manage such situation-specific traffic patterns is deemed to be necessary. Therefore, this study is conducted for the purpose of establishment of a plan for contextual signal control management through signal optimization at the network level after setting the Frame Signal in accordance to the traffic patterns gathered from the short-term traffic forecast data as a means to mitigate the problems with existing standardized signal operations.

농어촌 정보화의 포스트 코로나 대응 변화에 대한 사례 연구: 해외 농어촌 정보화 정책의 코로나19 시기 변화 방향을 중심으로

  • Lee, Jongtae
    • Agribusiness and Information Management
    • /
    • v.13 no.1
    • /
    • pp.26-40
    • /
    • 2021
  • During the pandemic status of COVID-19 since 2019 December, demands and attention on various convergence services with non-contact technologies and social adoption are increasing. Along with these increased demands and attention, the digital divide issues should be concerned to understand the informatization degrees of rural area residences, the elderly, the disabled, and the low-income. Furthermore, rural area residences may be the elderly, the disabled, and the low-income also. It may mean that the rural area should be considered as in noticeable status of the digital divide. This study focuses on the policy alternatives to reduce the digital divide in rural areas with a literature review methodology and on the factors on informatization issues in rural areas. For the aims, this study analyzes the EU cases of informatization in rural areas to find out the advantages and disadvantages of the suggested policies. As the analysis result, it is clear that the EU countries try to enhance the economic and growth powers rather to reduce the digital divide gaps. Also, it can be considered that the EU countries focus on supporting the rural area to adopt the non-contact information services newly rather on maintaining the IT education services and the infrastructures in off-line environments.