• 제목/요약/키워드: 지능정보시스템

검색결과 5,794건 처리시간 0.035초

금리 스프레드와 산업별 주식 수익률 관계 분석 (Analysis of the relationship between interest rate spreads and stock returns by industry)

  • 김규형;박진수;서지혜
    • 지능정보연구
    • /
    • 제28권3호
    • /
    • pp.105-117
    • /
    • 2022
  • 본 연구는 다항회귀분석을 통해 장기금리와 단기금리의 차이인 금리 스프레드와 주식 수익률 간 영향을 분석한다. 기존 연구들은 미국시장을 중심으로 금리 스프레드를 통한 경기를 예측에 초점을 맞추어 진행되었다. 선행 연구들은 장단기금리의 기간을 조절하고 선행정도를 분석하며 금리 스프레드를 경기예측 선행지표로 검증했다. 국내에서도 2006년 경기종합지수 제 7차 개편 이후 금리스프레드를 경기 선행지수 구성항목에 포함하였으며 현재까지도 활용하고 있다. 그럼에도 불구하고 국내 주식시장에서 금리스프레드와 산업별 주식 수익률에 대한 연구는 부족하다. 때문에 본 연구에서는 국내주식시장을 대상으로 금리스프레드와 산업별 주식 수익률은 분석했다. 회귀분석을 통해 인과관계가 높은 장단기 금리를 선정하고 선행기간 및 산업별 상관관계를 파악했다. 연구 과정에서 단순 선형회귀 분석(Simple Linear Regression)의 한계를 극복하기 위해 다항 회귀분석(Polynomial Linear Regression)을 활용해 설명력을 높였다. 분석 결과 6개월 선행하여 무보증 3년 회사채(AA-) 수익률과 콜금리 수익률의 차이 금리스프레드로 사용했을 때 높은 인과를 확인하였으며 산업별 주식수익률을 분석한 결과 해당 금리 스프레드와 자동차산업의 수익률의 관계가 가장 밀접함을 확인했다. 본 연구를 통해 국내에서 금리 스프레드가 경기예측뿐만 아니라 주식수익률과도 인과관계가 있음을 확인한 것에 의의가 있다. 금리스프레드만 사용하여 주식 가격을 예측하는 것에는 한계가 있을 수 있으나 다양한 요인들과 적절히 활용할 경우 강력한 팩터로 역할을 할 것이라 기대한다.

전문어의 범용 공간 매핑을 위한 비선형 벡터 정렬 방법론 (Nonlinear Vector Alignment Methodology for Mapping Domain-Specific Terminology into General Space)

  • 김준우;윤병호;김남규
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.127-146
    • /
    • 2022
  • 최근 워드 임베딩이 딥러닝 기반 자연어 처리를 다루는 다양한 업무에서 우수한 성능을 나타내면서, 단어, 문장, 그리고 문서 임베딩의 고도화 및 활용에 대한 연구가 활발하게 이루어지고 있다. 예를 들어 교차 언어 전이는 서로 다른 언어 간의 의미적 교환을 가능하게 하는 분야로, 임베딩 모델의 발전과 동시에 성장하고 있다. 또한 핵심 기술인 벡터 정렬(Vector Alignment)은 임베딩 기반 다양한 분석에 적용될 수 있다는 기대에 힘입어 학계의 관심이 더욱 높아지고 있다. 특히 벡터 정렬은 최근 수요가 높아지고 있는 분야간 매핑, 즉 대용량의 범용 문서로 학습된 사전학습 언어모델의 공간에 R&D, 의료, 법률 등 전문 분야의 어휘를 매핑하거나 이들 전문 분야간의 어휘를 매핑하기 위한 실마리를 제공할 수 있을 것으로 기대된다. 하지만 학계에서 주로 연구되어 온 선형 기반 벡터 정렬은 기본적으로 통계적 선형성을 가정하기 때문에, 본질적으로 상이한 형태의 벡터 공간을 기하학적으로 유사한 것으로 간주하는 가정으로 인해 정렬 과정에서 필연적인 왜곡을 야기한다는 한계를 갖는다. 본 연구에서는 이러한 한계를 극복하기 위해 데이터의 비선형성을 효과적으로 학습하는 딥러닝 기반 벡터 정렬 방법론을 제안한다. 제안 방법론은 서로 다른 공간에서 벡터로 표현된 전문어 임베딩을 범용어 임베딩 공간에 정렬하는 스킵연결 오토인코더와 회귀 모델의 순차별 학습으로 구성되며, 학습된 두 모델의 추론을 통해 전문 어휘를 범용어 공간에 정렬할 수 있다. 제안 방법론의 성능을 검증하기 위해 2011년부터 2020년까지 수행된 국가 R&D 과제 중 '보건의료' 분야의 문서 총 77,578건에 대한 실험을 수행한 결과, 제안 방법론이 기존의 선형 벡터 정렬에 비해 코사인 유사도 측면에서 우수한 성능을 나타냄을 확인하였다.

도메인 특수성이 도메인 특화 사전학습 언어모델의 성능에 미치는 영향 (The Effect of Domain Specificity on the Performance of Domain-Specific Pre-Trained Language Models)

  • 한민아;김윤하;김남규
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.251-273
    • /
    • 2022
  • 최근 텍스트 분석을 딥러닝에 적용한 연구가 꾸준히 이어지고 있으며, 특히 대용량의 데이터 셋을 학습한 사전학습 언어모델을 통해 단어의 의미를 파악하여 요약, 감정 분류 등의 태스크를 수행하려는 연구가 활발히 이루어지고 있다. 하지만 기존 사전학습 언어모델이 특정 도메인을 잘 이해하지 못한다는 한계를 나타냄에 따라, 최근 특정 도메인에 특화된 언어모델을 만들고자 하는 방향으로 연구의 흐름이 옮겨가고 있는 추세이다. 도메인 특화 추가 사전학습 언어모델은 특정 도메인의 지식을 모델이 더 잘 이해할 수 있게 하여, 해당 분야의 다양한 태스크에서 성능 향상을 가져왔다. 하지만 도메인 특화 추가 사전학습은 해당 도메인의 말뭉치 데이터를 확보하기 위해 많은 비용이 소요될 뿐 아니라, 고성능 컴퓨팅 자원과 개발 인력 등의 측면에서도 많은 비용과 시간이 투입되어야 한다는 부담이 있다. 아울러 일부 도메인에서 추가 사전학습 후의 성능 개선이 미미하다는 사례가 보고됨에 따라, 성능 개선 여부가 확실하지 않은 상태에서 도메인 특화 추가 사전학습 모델의 개발에 막대한 비용을 투입해야 하는지 여부에 대해 판단이 어려운 상황이다. 이러한 상황에도 불구하고 최근 각 도메인의 성능 개선 자체에 초점을 둔 추가 사전학습 연구는 다양한 분야에서 수행되고 있지만, 추가 사전학습을 통한 성능 개선에 영향을 미치는 도메인의 특성을 규명하기 위한 연구는 거의 이루어지지 않고 있다. 본 논문에서는 이러한 한계를 극복하기 위해, 실제로 추가 사전학습을 수행하기 전에 추가 사전학습을 통한 해당 도메인의 성능 개선 정도를 선제적으로 확인할 수 있는 방안을 제시한다. 구체적으로 3개의 도메인을 분석 대상 도메인으로 선정한 후, 각 도메인에서의 추가 사전학습을 통한 분류 정확도 상승 폭을 측정한다. 또한 각 도메인에서 사용된 주요 단어들의 정규화된 빈도를 기반으로 해당 도메인의 특수성을 측정하는 지표를 새롭게 개발하여 제시한다. 사전학습 언어모델과 3개 도메인의 도메인 특화 사전학습 언어모델을 사용한 분류 태스크 실험을 통해, 도메인 특수성 지표가 높을수록 추가 사전학습을 통한 성능 개선 폭이 높음을 확인하였다.

머신러닝을 활용한 수도권 약수터 수질 예측 모델 개발 (Development of a water quality prediction model for mineral springs in the metropolitan area using machine learning)

  • 임영우;엄지연;곽기영
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.307-325
    • /
    • 2023
  • 코로나19 팬데믹의 장기화로 인해 실내 생활에 지쳐가는 사람들이 우울감, 무기력증 등을 해소하기 위해 근거리의 산과 국립공원을 찾는 빈도가 폭발적으로 증가하였다. 자연으로 나온 수많은 사람들이 오가는 걸음을 멈추고 숨을 돌리며 쉬어가는 장소가 있는데 바로 약수터이다. 산이나 국립공원이 아니더라도 근린공원 또는 산책로에서도 간간이 찾아볼 수 있는 약수터는 수도권에만 약 6백여개가 위치해 있다. 하지만 불규칙적이고 수작업으로 수행되는 수질검사로 인해 사람들은 실시간으로 검사 결과를 알 수 없는 상태에서 약수를 음용하게 된다. 따라서 본 연구에서는 약수터 수질에 영향을 미치는 요인을 탐색하고 다양한 곳에 흩어져 있는 데이터를 수집하여 실시간으로 약수터 수질을 예측할 수 있는 모델을 개발하고자 한다. 데이터 수집의 한계로 인해 서울과 경기로 지역을 한정한 후 데이터 관리가 잘 이루어지고 있는 18개 시의 약 300여개 약수터를 대상으로 2015~2020년의 수질 검사 데이터를 확보하였다. 약수터 수질 적합 여부에 영향을 미칠 것으로 여겨지는 다양한 요인들 중 두 차례의 검토를 거쳐 총 10개의 요인을 최종 선별하였다. 최근 주목받고 있는 자동화 머신러닝 기술인 AutoML 기법을 활용하여 20여가지의 머신러닝 기법들 중 예측 성능 기준 상위 5개의 모델을 도출하였으며 그 중 catboost 모델이 75.26%의 예측 분류 정확도로 가장 높은 성능을 가지고 있음을 확인하였다. 추가로 SHAP 기법을 통해 분석에 사용한 변인들이 예측에 미치는 절대적인 영향력을 살펴본 결과 직전 수질 검사에서 부적합 판정을 받았는지 여부가 가장 중요한 요인이었으며 그 외 평균 기온, 과거 연속 2번 수질 부적합 판정 기록 유무, 수질 검사 당일 기온, 약수터 고도 등이 수질 부적합 여부에 영향을 미치고 있음을 확인하였다.

ESG 평가방법 비교: K-ESG 가이드라인을 중심으로 (Comparison of ESG Evaluation Methods: Focusing on the K-ESG Guideline)

  • 조찬희;이형용
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.1-25
    • /
    • 2023
  • ESG 경영은 시대의 필수가 되어 가고 있지만, ESG 평가지표가 전세계적으로 600여개나 되어서 개별 회사에 대해 평가기관에 따라 서로 다른 ESG 등급이 부여되어 시장의 혼란을 초래하였다. 또한 ESG 적용 방법이 공개되지 않아서 ESG 경영을 도입하려는 회사가 도움을 받을 수 있는 방법이 많지 않았다. 이에 산업통상자원부는 부처 합동으로 K-ESG 가이드라인을 발표하였다. 기존 연구들 중에 ESG 평가회사별 평가등급 비교나 평가 진단항목의 적용에 대한 연구가 거의 없었다. 이에 본 연구에서는 K-ESG 가이드라인을 통해 이미 ESG 등급을 보유한 회사에 적용하여 K-ESG 가이드라인의 적용 용이성과 개선점을 도출하고자 하였다. 글로벌 ESG 평가기관, 국내 ESG 평가기관의 ESG 등급을 보유한 기업에 대해 K-ESG 가이드라인을 통해 산출한 점수를 비교하여 K-ESG 가이드라인의 위치도 확인하고자 한다. 분석 결과로서 첫째, K-ESG 가이드라인은 개별 회사가 ESG 목표 설정과 ESG 실천의 방향을 자체적으로 설정하는데 명확하고 자세한 기준을 제공해주고 있다. 둘째, K-ESG 가이드라인은 글로벌 대표 ESG 평가기관 및 국내의 KCGS의 평가지표를 포괄하는 61개의 진단항목과 12개의 추가 진단항목을 갖추고 있어서 국내외 ESG 평가기준에 적합하다. 셋째, K-ESG 가이드라인의 ESG 평가등급은 글로벌 ESG 평가기관 중 Refinitiv보다 낮았고 MSCI보다 높았으며 국내 ESG 평가기관인 KCGS의 등급보다 낮거나 유사한 결과가 나왔다. 넷째, K-ESG 가이드라인의 적용 용이성은 높은 것으로 판단된다. 다섯째, K-ESG 가이드라인의 개선되어야 할 점으로서 정부가 K-ESG 환경 영역의 진단항목에 대한 산업평균 통계치를 집계하여 정부의 ESG 전용 사이트에 발표할 필요가 있다. 또한 산업별 E, S 그리고 G의 적용 가중치도 확정하여 공시를 할 필요가 있다. 이 연구는 ESG 경영에 관심이 있는 ESG 평가기관, 기업의 경영진 그리고 ESG 담당자 등에게 ESG 경영전략 수립과 세부이행에 있어 도움이 될 것이며, K-ESG 가이드라인의 추후 개정 시 참고할 제언도 제공한다.

철도 유휴부지 활용방안: 군집분석을 활용한 태양광발전 입지 제안 (Utilizing the Idle Railway Sites: A Proposal for the Location of Solar Power Plants Using Cluster Analysis)

  • 강은경;양선욱;권지윤;양성병
    • 지능정보연구
    • /
    • 제29권1호
    • /
    • pp.79-105
    • /
    • 2023
  • 지구온난화와 기후변화 등의 유례없는 기상이변으로 전 세계 곳곳이 극심한 몸살을 앓고 있으며, 경제적 손실 또한 눈덩이처럼 불어나고 있다. 이러한 문제를 해결하기 위해 2016년 '파리기후변화협정(The Paris Agreement)'이 체결되어 지구의 평균온도 상승을 1.5℃ 아래로 유지하기 위한 정부간 협의체가 결성되었으며, 우리나라도 2050년 탄소중립을 선언함으로써 기후재앙을 막기 위한 노력을 진행하고 있다. 특히, 온실가스 배출로 인한 기온상승은 수출 의존도가 높은 우리나라 경제는 물론 환경과 사회 전반에 부정적인 영향을 미칠 것으로 예상된다. 또한, 교통수단의 다변화가 가속화되면서 수단선택의 변화도 크게 증가하고 있는 가운데 저성장 시대의 개발 패러다임이 도시재생으로 변화함에 따라, 노선의 수요 감소, 선형 개량, 도심 철도의 외곽 이설 등에 영향을 받아 증가하고 있는 철도 유휴부지 활용에 대한 관심이 높아지고 있다. 한편, 철도 유휴부지를 활용한 태양광발전은 '재생에너지 3020'의 태양광발전 목표를 일부 달성하면서도, 입지를 둘러싼 환경훼손과 주민 수용성 문제에서 자유로워질 수 있는 장점에도 불구하고, 설비실태나 설비계획에 있어 미진한 상황이다. 이에, 본 연구에서는 국가철도공단과 재생에너지클라우드플랫폼에서 제공하는 데이터를 활용하여 태양광발전 설비 설치가 가능한 적합 유휴지를 발굴 및 분석하는 알고리즘을 개발하고, 사용자가 원하는 조건을 고려한 잠재적인 적합 지역을 탐색 및 도출함으로써, 개발 초기 설비나 확충 등에 소요되는 막대한 비용을 절약할 수 있는 방안을 마련하고자 하였다. 본 연구는 다양한 군집분석을 활용하여 철도 유휴부지에 태양광발전 설치입지를 도출할 수 있는 최적의 알고리즘을 개발하고, 면적, 설치용량, 발전량, 예상수익 등이 모두 높은 '태양광발전 설치 적극권장 지역' 202곳을 도출하였다. 이를 바탕으로 경제와 환경을 동시에 고려한 관점에서 의사결정자의 합리적인 판단을 도울 수 있을 것으로 기대한다.

산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로 (A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles)

  • 김원희;권영옥
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.287-316
    • /
    • 2023
  • 최근 전 세계적으로 기업의 환경(Environmental)·사회(Social)·지배구조(Governance)의 비재무적 요소를 고려한 지속가능경영이 필수적으로 요구되면서, 각 기업들은 이에 대응할 수 있는 전략적 방향 수립이 중요해지고 있다. 특히 기업이 속한 산업별로 상이한 ESG 이슈에 대한 이해를 바탕으로 산업과 개별 기업의 특성을 반영한 전략을 개발하고 추진할 수 있어야 할 것이다. 이에 본 연구에서는 금융, 제조, IT 분야별로 나누어 주요 국내 기업들의 ESG 보고서와 관련 뉴스 기사를 이용하여 산업별 ESG 동향과 활동을 비교 분석하였다. 키워드 빈도분석과 토픽 모델링을 활용한 분석 결과, 국내 ESG 선도 기업들의 지속가능경영 활동에서의 산업별 차이를 도출 할 수 있다. 금융 분야에서는 '고객 중심 경영'과 '기후 변화 대응', 제조 분야에서는 '지속가능한 공급망 관리'와 '탄소중립', IT 분야에서는 '기술혁신'과 '디지털 책임'이 강조되었다. ESG 요소별 우선 순위가 높은 활동의 예를 들면, 환경 측면에서는 '에너지 절감과 친환경 활동', 사회 측면에서는 '사회공헌과 상생', 지배구조 측면에서는 '이사회 독립성 강화와 리스크 관리' 등으로 나타났다. 더 나아가 산업별 각 ESG 요소의 핵심 이슈 뿐 아니라 ESG 보고서와 뉴스 기사의 내용 유사성 및 차별점도 확인하였다. 연구의 결과는 산업별 동향을 고려한 ESG 경영 전략 및 정책의 방향성을 제시하고 있으며 이는 산업별 ESG 평가체계 수립에도 도움이 될 것으로 기대한다.

온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인에 대한 연구 (An Empirical Study on Influencing Factors of Switching Intention from Online Shopping to Webrooming)

  • 최현승;양성병
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.19-41
    • /
    • 2016
  • 정보통신기술의 발전과 모바일 기기 사용의 생활화로 인해 최근 많은 소비자들이 멀티채널 쇼핑(multi-channel shopping)이라는 새로운 쇼핑 행태를 보이고 있다. 온라인 쇼핑이 등장한 이후, 온라인 매장에서 상품을 구매하기 전 오프라인 매장에서 상품을 먼저 확인하는 쇼루밍(showrooming) 형태의 멀티채널 쇼핑이 한 때 대세를 이루었으나, 최근에는 스마트폰, 태블릿 PC, 스마트워치 등 스마트 기기 사용의 폭발적 증가와 옴니채널(omni-channel) 전략으로 대표되는 오프라인 채널의 대대적 반격으로 인해 오프라인 매장에서 상품을 구매하기 전 온라인(혹은 모바일)으로 정보를 먼저 확인하는 웹루밍(webrooming) 현상이 도드라지게 나타나 온라인 소매업자를 위협하고 있다. 이러한 상황에서 소비자의 온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인을 분석하는 것이 의미가 있음에도 불구하고, 기존 대부분의 선행연구는 싱글채널(single-channel) 혹은 멀티채널 쇼핑 자체에만 초점을 맞추고 있다. 이에, 본 연구에서는 밀고-당기기-이주이론(push-pull-mooring theory)을 바탕으로 소비자의 온라인 채널 쇼핑이 웹루밍 형태의 쇼핑으로 전환되는 과정을 상품정보 탐색과 구매행위로 각각 구분하여 그 영향을 실증하였다. 연구모형을 검증하기 위하여, 웹루밍 경험이 있는 수도권 소재 대학생을 대상으로 280개의 설문 표본을 수집하였다. 본 연구의 결과는 현업 마케팅 종사자에게 멀티채널 소비자들을 관리하는 데 있어 실무적인 시사점을 제공함과 동시에, 향후 다양한 형태의 멀티채널 쇼핑전환 연구로의 확장에 기여할 수 있을 것으로 기대한다.

온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측 (Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news)

  • 정지선;김동성;김종우
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.37-51
    • /
    • 2015
  • 인터넷 기술의 발전과 인터넷 상 데이터의 급속한 증가로 인해 데이터의 활용 목적에 적합한 분석방안 연구들이 활발히 진행되고 있다. 최근에는 텍스트 마이닝 기법의 활용에 대한 연구들이 이루어지고 있으며, 특히 문서 내 텍스트를 기반으로 문장이나 어휘의 긍정, 부정과 같은 극성 분포에 따라 의견을 스코어링(scoring)하는 감성분석과 관련된 연구들도 다수 이루어지고 있다. 이러한 연구의 연장선상에서, 본 연구는 인터넷 상의 특정 기업에 대한 뉴스 데이터를 수집하여 이들의 감성분석을 실시함으로써 주가의 등락에 대한 예측을 시도하였다. 개별 기업의 뉴스 정보는 해당 기업의 주가에 영향을 미치는 요인으로, 적절한 데이터 분석을 통해 주가 변동 예측에 유용하게 활용될 수 있을 것으로 기대된다. 따라서 본 연구에서는 개별 기업의 온라인 뉴스 데이터에 대한 감성분석을 바탕으로 개별 기업의 주가 변화 예측을 꾀하였다. 이를 위해, KOSPI200의 상위 종목들을 분석 대상으로 선정하여 국내 대표적 검색 포털 서비스인 네이버에서 약 2년간 발생된 개별 기업의 뉴스 데이터를 수집 분석하였다. 기업별 경영 활동 영역에 따라 기업 온라인 뉴스에 나타나는 어휘의 상이함을 고려하여 각 개별 기업의 어휘사전을 구축하여 분석에 활용함으로써 감성분석의 성능 향상을 도모하였다. 분석결과, 기업별 일간 주가 등락여부에 대한 예측 정확도는 상이했으며 평균적으로 약 56%의 예측률을 보였다. 산업 구분에 따른 주가 예측 정확도를 통하여 '에너지/화학', '생활소비재', '경기소비재'의 산업군이 상대적으로 높은 주가 예측 정확도를 보임을 확인하였으며, '정보기술'과 '조선/운송' 산업군은 주가 예측 정확도가 낮은 것으로 확인되었다. 본 논문은 온라인 뉴스 정보를 활용한 기업의 어휘사전 구축을 통해 개별 기업의 주가 등락 예측에 대한 분석을 수행하였으며, 향후 감성사전 구축 시 불필요한 어휘가 추가되는 문제점을 보완한 연구 수행을 통하여 주가 예측 정확도를 높이는 방안을 모색할 수 있을 것이다.

소셜 뉴스를 위한 시간 종속적인 메타데이터 기반의 컨텍스트 공유 프레임워크 (Context Sharing Framework Based on Time Dependent Metadata for Social News Service)

  • 가명현;오경진;홍명덕;조근식
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.39-53
    • /
    • 2013
  • 인터넷의 발달과 SNS의 등장으로 정보흐름의 방식이 크게 바뀌었다. 이러한 변화에 따라 소셜 미디어가 급부상하고 있으며 소셜 미디어와 비디오 콘텐츠가 융합된 소셜 TV, 소셜 뉴스의 중요성이 강조되고 있다. 이러한 환경 속에서 사용자들은 단순히 콘텐츠를 탐색만 하는 것이 아니라 같은 콘텐츠를 이용하고 있는 친구들이나 지인들과 콘텐츠에 대한 정보나 경험들을 공유하고 더 나아가 새로운 콘텐츠를 만들어내기도 한다. 하지만 기존의 소셜 뉴스에서는 이러한 사용자들의 특성을 반영해 주지 못하고 있다. 특히 이용자들의 참여성만을 고려하고 있어서 서비스간의 차별화가 어렵고 뉴스 콘텐츠에 대한 정보나 경험 공유 시 컨텍스트 공유가 어렵다는 문제가 있다. 이를 해결하기 위해 본 논문에서는 뉴스를 내용별로 분할하고 분할된 뉴스에서 추출된 시간 종속적인 메타데이터를 제공하는 프레임워크를 제안한다. 제안하는 프레임워크에서는 스토리 분할 방법을 이용하여 뉴스 대본을 내용별로 분할한다. 또한 뉴스 전체내용을 대표하는 태그, 분할된 뉴스를 나타내는 서브 태그, 분할된 뉴스가 비디오에서 시작하는 위치 즉, 시간 종속적인 메타데이터를 제공한다. 소셜 뉴스 이용자들에게 시간 종속적인 메타데이터를 제공한다면 이용자들은 전체의 뉴스 내용 중에 자신이 원하는 부분만을 탐색 할 수 있으며 이 부분에 대한 견해를 남길 수 있다. 그리고 뉴스의 전달이나 의견 공유 시 메타데이터를 함께 전달함으로써 전달하고자 하는 내용에 바로 접근이 가능하며 프레임워크의 성능은 추출된 서브 태그가 뉴스의 실제 내용을 얼마나 잘 나타내 주느냐에 따라 결정된다. 그리고 서브 태그는 스토리 분할의 정확성과 서브 태그를 추출하는 방법에 따라 다르게 추출된다. 이 점을 고려하여 의미적 유사도 기반의 스토리 분할 방법을 프레임워크에 적용하였고 벤치마크 알고리즘과 성능 비교 실험을 수행하였으며 분할된 뉴스에서 추출된 서브 태그들과 실제 뉴스의 내용을 비교하여 서브 태그들의 정확도를 분석하였다. 결과적으로 의미적 유사도를 고려한 스토리 분할 방법이 더 우수한 성능을 보였으며 추출된 서브 태그들도 컨텍스트와 관련된 단어들이 추출 되었다.