• Title/Summary/Keyword: 지능적 시뮬레이션

Search Result 558, Processing Time 0.034 seconds

Search Space Reduction by Vertical-Decomposition of a Grid Map (그리드 맵의 수직 분할에 의한 탐색 공간 축소)

  • Jung, Yewon;Lee, Juyoung;Yu, Kyeonah
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.1026-1033
    • /
    • 2016
  • Path-finding on a grid map is a problem generally addressed in the fields of robotics, intelligent agents, and computer games. As technology advances, virtual game worlds tend to be represented more accurately and more realistically, resulting in an excessive increase in the number of grid tiles and in path-search time. In this study, we propose a path-finding algorithm that allows a prompt response to real-time queries by constructing a reduced state space and by precomputing all possible paths in an offline preprocessing stage. In the preprocessing stage, we vertically decompose free space on the grid map, construct a connectivity graph where nodes are the decomposed regions, and store paths between all pairs of nodes in matrix form. In the real-time query stage, we first find the nodes containing the query points and then retrieve the corresponding stored path. The proposed method is simulated for a set of maps that has been used as a benchmark for grid-based path finding. The simulation results show that the state space and the search time decrease significantly.

Traffic Control using Q-Learning Algorithm (Q 학습을 이용한 교통 제어 시스템)

  • Zheng, Zhang;Seung, Ji-Hoon;Kim, Tae-Yeong;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5135-5142
    • /
    • 2011
  • A flexible mechanism is proposed in this paper to improve the dynamic response performance of a traffic flow control system in an urban area. The roads, vehicles, and traffic control systems are all modeled as intelligent systems, wherein a wireless communication network is used as the medium of communication between the vehicles and the roads. The necessary sensor networks are installed in the roads and on the roadside upon which reinforcement learning is adopted as the core algorithm for this mechanism. A traffic policy can be planned online according to the updated situations on the roads, based on all the information from the vehicles and the roads. This improves the flexibility of traffic flow and offers a much more efficient use of the roads over a traditional traffic control system. The optimum intersection signals can be learned automatically online. An intersection control system is studied as an example of the mechanism using Q-learning based algorithm, and simulation results showed that the proposed mechanism can improve the traffic efficiency and the waiting time at the signal light by more than 30% in various conditions compare to the traditional signaling system.

Vibration Control of Vehicle using Road Profile Information (외란 형상 정보를 활용한 진동제어)

  • Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.431-437
    • /
    • 2017
  • In this study, based on the RPS algorithm, the application results to an electrically controlled suspension system using previewed road information are presented. Reducing the excessive vibration induced by a disturbance transmitted to the system and secure its stability is a major issue. In particular, in the automotive industry, the demand is constantly being raised. A typical external disturbance causing vibration and instability of a vehicle is an irregular roadway surface that contacts a running vehicle tire. Therefore, obtaining such profile information is an important process. The RPS algorithm using a multi sensor system was constructed and implemented in a real car. Through experimental work using the RPS system included non-contact type optical sensors, it could robustly reconstruct the road input profiles from the intermixed data onto the vehicle's dynamic motion while traveling at an uneven roadway surface. A controller with a preview control was designed in the framework of a semi-active suspension system based on the 7 degrees of freedom full vehicle model. The control performance of the system was evaluated through simulations and the results were compared with the passive vehicle condition. These results highlight the feasibility of the presented control frame.

A Study On The Application of RPA(Robotics Process Automation) For Productivity Of Business Documents (비즈니스 문서의 생산성 향상을 위한 RPA(Robotics Process Automation)적용방안에 대한 연구)

  • Hyun, Young Geun;Lee, Joo Yeoun
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.199-212
    • /
    • 2019
  • Digitalization is creating a variety of changes and innovations in our business environment. In manufacturing, robots have long been used for automation to innovate processing speed and quality. The RPA brings these innovations in manufacturing sites to the office space. The purpose of this study is to improve productivity for simple, repetitive tasks in these office space. For identify the potential of automation related to productivity improvement, I looked at the concept of business automation, and then simulated the five areas of business documentation works with agile methodology. In conclusion, I confirmed that productivity improvement of 97.3% in quality inspection and 31.7% in editorial design is possible, and examined the direction to apply to actual work. Based on these results, future study will explore the application of Intelligent Process Automation (IPA).

Weighted Filter Algorithm based on Distribution Pattern of Pixel Value for AWGN Removal (AWGN 제거를 위한 화소값 분포패턴에 기반한 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.44-49
    • /
    • 2022
  • Abstract Recently, with the development of IoT technology and communication media, various video equipment is being used in industrial fields. Image data acquired from cameras and sensors are easily affected by noise during transmission and reception, and noise removal is essential as it greatly affects system reliability. In this paper, we propose a weight filter algorithm based on the pixel value distribution pattern to preserve details in the process of restoring images damaged in AWGN. The proposed algorithm calculates weights according to the pixel value distribution pattern of the image and restores the image by applying a filtering mask. In order to analyze the noise removal performance of the proposed algorithm, it was simulated using enlarged image and PSNR compared to the existing method. The proposed algorithm preserves important characteristics of the image and shows the performance of efficiently removing noise compared to the existing method.

A Study on LSTM-based water level prediction model and suitability evaluation (LSTM 기반 배수지 수위 변화 예측모델과 적합성 평가 연구)

  • Lee, Eunji;Park, Hyungwook;Kim, Eunju
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.56-62
    • /
    • 2022
  • Water reservoir is defined as a storage space to hold and supply filtered water and it's significantly important to manage water level in the water reservoir so as to stabilize water supply by controlling water supply depending on demand. Liquid level sensors have been installed in the water reservoir and the pumps in the booster station facilitated management for optimum water level in the water reservoir. But the incident responses including sensor malfunction and communication breakdown actually count on manager's inspection, which involves risk of accidents. To stabilize draining facility management, this study has come up with AI model that predicts changes in the water level in the water reservoir. Going through simulation in the case of missing data in the water level to verify stability in relation to the field application of the prediction model for water level changes in the reservoir, the comparison of actual change value and predicted value allows to test utility of the model.

A Study on the Latency Analysis of Bus Information System Based on Edge Cloud System (엣지 클라우드 시스템 기반 버스 정보 시스템의 지연시간 분석연구)

  • SEO Seungho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.3-11
    • /
    • 2023
  • Real-time control systems are growing rapidly as infrastructure technologies such as IoT and mobile communication develop and services that value real-time such as factory management and vehicle operation checks increase. Various solutions have been proposed to increase the time sensitivity of this system, but most real-time control systems are currently composed of local servers and multiple clients located in control stations, which are transmitted to local servers where control systems are located. In this paper, we proposed an edge computing-based real-time control model that can reduce the time it takes for the bus information system, one of the real-time control systems, to provide the information to the user at the time it collects the information. Simulating the existing model and the edge computing model, the edge computing model confirmed that the cost for users to receive data is reduced from at least 10% to up to 80% compared to the existing model.

  • PDF

Transfer Learning Backbone Network Model Analysis for Human Activity Classification Using Imagery (영상기반 인체행위분류를 위한 전이학습 중추네트워크모델 분석)

  • Kim, Jong-Hwan;Ryu, Junyeul
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • Recently, research to classify human activity using imagery has been actively conducted for the purpose of crime prevention and facility safety in public places and facilities. In order to improve the performance of human activity classification, most studies have applied deep learning based-transfer learning. However, despite the increase in the number of backbone network models that are the basis of deep learning as well as the diversification of architectures, research on finding a backbone network model suitable for the purpose of operation is insufficient due to the atmosphere of using a certain model. Thus, this study applies the transfer learning into recently developed deep learning backborn network models to build an intelligent system that classifies human activity using imagery. For this, 12 types of active and high-contact human activities based on sports, not basic human behaviors, were determined and 7,200 images were collected. After 20 epochs of transfer learning were equally applied to five backbone network models, we quantitatively analyzed them to find the best backbone network model for human activity classification in terms of learning process and resultant performance. As a result, XceptionNet model demonstrated 0.99 and 0.91 in training and validation accuracy, 0.96 and 0.91 in Top 2 accuracy and average precision, 1,566 sec in train process time and 260.4MB in model memory size. It was confirmed that the performance of XceptionNet was higher than that of other models.

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

A Study on the Performance Evaluation of G2B Procurement Process Innovation by Using MAS: Korea G2B KONEPS Case (멀티에이전트시스템(MAS)을 이용한 G2B 조달 프로세스 혁신의 효과평가에 관한 연구 : 나라장터 G2B사례)

  • Seo, Won-Jun;Lee, Dae-Cheor;Lim, Gyoo-Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.157-175
    • /
    • 2012
  • It is difficult to evaluate the performance of process innovation of e-procurement which has large scale and complex processes. The existing evaluation methods for measuring the effects of process innovation have been mainly done with statistically quantitative methods by analyzing operational data or with qualitative methods by conducting surveys and interviews. However, these methods have some limitations to evaluate the effects because the performance evaluation of e-procurement process innovation should consider the interactions among participants who are active either directly or indirectly through the processes. This study considers the e-procurement process as a complex system and develops a simulation model based on MAS(Multi-Agent System) to evaluate the effects of e-procurement process innovation. Multi-agent based simulation allows observing interaction patterns of objects in virtual world through relationship among objects and their behavioral mechanism. Agent-based simulation is suitable especially for complex business problems. In this study, we used Netlogo Version 4.1.3 as a MAS simulation tool which was developed in Northwestern University. To do this, we developed a interaction model of agents in MAS environment. We defined process agents and task agents, and assigned their behavioral characteristics. The developed simulation model was applied to G2B system (KONEPS: Korea ON-line E-Procurement System) of Public Procurement Service (PPS) in Korea and used to evaluate the innovation effects of the G2B system. KONEPS is a successfully established e-procurement system started in the year 2002. KONEPS is a representative e-Procurement system which integrates characteristics of e-commerce into government for business procurement activities. KONEPS deserves the international recognition considering the annual transaction volume of 56 billion dollars, daily exchanges of electronic documents, users consisted of 121,000 suppliers and 37,000 public organizations, and the 4.5 billion dollars of cost saving. For the simulation, we analyzed the e-procurement of process of KONEPS into eight sub processes such as 'process 1: search products and acquisition of proposal', 'process 2 : review the methods of contracts and item features', 'process 3 : a notice of bid', 'process 4 : registration and confirmation of qualification', 'process 5 : bidding', 'process 6 : a screening test', 'process 7 : contracts', and 'process 8 : invoice and payment'. For the parameter settings of the agents behavior, we collected some data from the transactional database of PPS and some information by conducting a survey. The used data for the simulation are 'participants (government organizations, local government organizations and public institutions)', 'the number of bidding per year', 'the number of total contracts', 'the number of shopping mall transactions', 'the rate of contracts between bidding and shopping mall', 'the successful bidding ratio', and the estimated time for each process. The comparison was done for the difference of time consumption between 'before the innovation (As-was)' and 'after the innovation (As-is).' The results showed that there were productivity improvements in every eight sub processes. The decrease ratio of 'average number of task processing' was 92.7% and the decrease ratio of 'average time of task processing' was 95.4% in entire processes when we use G2B system comparing to the conventional method. Also, this study found that the process innovation effect will be enhanced if the task process related to the 'contract' can be improved. This study shows the usability and possibility of using MAS in process innovation evaluation and its modeling.