• Title/Summary/Keyword: 지능자탄

Search Result 2, Processing Time 0.014 seconds

Simulation and Analysis of Top-Attack Smart Submunition Descent Motions and Target Searching Footprint (상부공격 지능자탄의 낙하운동 및 탐색경로 시뮬레이션)

  • Kim, Ki-Pyo;Chang, Kwe-Hyun;Choi, Sang-Kyung;Hong, Jong-Tai
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.5-13
    • /
    • 2008
  • A smart submunition drops through the expected trajectory to have a appropriate target searching footprint for the armored ground vehicles. Parachutes can be used as a tool to decelerate and spin the submunition. Usually submunition's descent velocity, spin rate, submunition inclination angle against vertical and dynamic stability affect to its target searching footprint. Therefore it is important to design optimal parachute and load configuration for the overall system performance. In this paper we described the dynamic motion of submunition by the mathematical model of parachute and load. Through the computer simulation we can analyze the submunition footprint affected by parachute and load design.

A Study on the Design Analysis and Test of a Ballute Type Parachute of the Smart Submunition (지능형 자탄의 벌루트형 낙하산 설계 해석 및 시험에 관한 연구)

  • Lee, Sang-Kil;Lee, Sang-Seung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.23-31
    • /
    • 2008
  • The configuration model of a ballute type RAID(Ram Air Inflated Decelerator) for reducing the high speed and high revolution of smart submuntion is designed and tested. Three dimensional incompressible turbulent flow computational fluid dynamic analysis for the assembly of ballute and submunition is performed and pressure distribution, velocity, and drag around the assembly is calculated. Aerodynamic characteristics of the ballute assembly such as air flow inside and outside of the ballute and pressure distribution is clearly shown and it's drag coefficient is computed. Trajectory analysis of the submunition is performed and is in good agreement with the descending trajectory data of experimental model tested.