• 제목/요약/키워드: 지능시스템

검색결과 12,382건 처리시간 0.037초

기계학습을 활용한 상품자산 투자모델에 관한 연구 (A Study on Commodity Asset Investment Model Based on Machine Learning Technique)

  • 송진호;최흥식;김선웅
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.127-146
    • /
    • 2017
  • 상품자산(Commodity Asset)은 주식, 채권과 같은 전통자산의 포트폴리오의 안정성을 높이기 위한 대체투자자산으로 자산배분의 형태로 투자되고 있지만 주식이나 채권 자산에 비해 자산배분에 대한 모델이나 투자전략에 대한 연구가 부족한 실정이다. 최근 발전한 기계학습(Machine Learning) 연구는 증권시장의 투자부분에서 적극적으로 활용되고 있는데, 기존 투자모델의 한계점을 개선하는 좋은 성과를 나타내고 있다. 본 연구는 이러한 기계학습의 한 기법인 SVM(Support Vector Machine)을 이용하여 상품자산에 투자하는 모델을 제안하고자 한다. 기계학습을 활용한 상품자산에 관한 기존 연구는 주로 상품가격의 예측을 목적으로 수행되었고 상품을 투자자산으로 자산배분에 관한 연구는 찾기 힘들었다. SVM을 통한 예측대상은 투자 가능한 대표적인 4개의 상품지수(Commodity Index)인 골드만삭스 상품지수, 다우존스 UBS 상품지수, 톰슨로이터 CRB상품지수, 로저스 인터내셔날 상품지수와 대표적인 상품선물(Commodity Futures)로 구성된 포트폴리오 그리고 개별 상품선물이다. 개별상품은 에너지, 농산물, 금속 상품에서 대표적인 상품인 원유와 천연가스, 옥수수와 밀, 금과 은을 이용하였다. 상품자산은 전반적인 경제활동 영역에 영향을 받기 때문에 거시경제지표를 통하여 투자모델을 설정하였다. 주가지수, 무역지표, 고용지표, 경기선행지표 등 19가지의 경제지표를 이용하여 상품지수와 상품선물의 등락을 예측하여 투자성과를 예측하는 연구를 수행한 결과, 투자모델을 활용하여 상품선물을 리밸런싱(Rebalancing)하는 포트폴리오가 가장 우수한 성과를 나타냈다. 또한, 기존의 대표적인 상품지수에 투자하는 것 보다 상품선물로 구성된 포트폴리오에 투자하는 것이 우수한 성과를 얻었으며 상품선물 중에서도 에너지 섹터의 선물을 제외한 포트폴리오의 성과가 더 향상된 성과를 나타남을 증명하였다. 본 연구에서는 포트폴리오 성과 향상을 위해 기존에 널리 알려진 전통적 주식, 채권, 현금 포트폴리오에 상품자산을 배분하고자 할 때 투자대상은 상품지수에 투자하는 것이 아닌 개별 상품선물을 선정하여 자체적 상품선물 포트폴리오를 구성하고 그 방법으로는 기간마다 강세가 예측되는 개별 선물만을 골라서 포트폴리오를 재구성하는 것이 효과적인 투자모델이라는 것을 제안한다.

법령정보 검색을 위한 생활용어와 법률용어 간의 대응관계 탐색 방법론 (Term Mapping Methodology between Everyday Words and Legal Terms for Law Information Search System)

  • 김지현;이종서;이명진;김우주;홍준석
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.137-152
    • /
    • 2012
  • 인터넷 환경에서 월드 와이드 웹이 등장한 이후 웹을 통해 수많은 웹 페이지들이 생산됨에 따라 사용자가 원하는 정보를 검색하기 위한 다양한 형태의 검색 서비스가 여러 분야에서 개발되어 활용되고 있다. 특히 법령 검색은 사용자가 현재 자신이 처한 상황에 필요한 법령을 검색하여 법령에 대한 지식을 얻기 위한 창구로써 국민의 편의를 제공하기 위해 반드시 필요한 서비스 중 하나이다. 이에 법제처는 2009년부터 국민 누구나 편리하게 법령에 관련된 정보를 검색할 수 있도록 국가의 법령뿐만 아니라 행정규칙이나 판례 등 모든 법령정보를 검색할 수 있는 검색 서비스를 제공하고 있다. 하지만 현재까지의 검색엔진 기술은 기본적으로 사용자가 입력한 질의어를 문서에 포함하고 있는지의 여부에 따라 해당 문서를 검색 결과로 제시한다. 법령 검색 서비스 또한 해당 법령에 등장하는 키워드를 활용하여 사용자에게 검색 결과를 제공해주고 있다. 따라서 법제처의 이런 노력에도 불구하고 법령이 전문가의 시각에서 작성되었기 때문에 법에 익숙하지 않은 일반 사용자는 자신이 필요한 법령을 검색하기 어려운 한계점을 가지고 있다. 이는 일반적으로 법령에 사용되는 용어들과 일반 사용자가 실생활에 사용하는 단어가 서로 상이하기 때문에 단순히 키워드의 단순 매칭 형태의 검색엔진에서는 사용자들이 주로 사용하는 생활용어를 이용해서 원하는 법령을 검색할 수 없다. 본 연구에서는 법률용어에 관한 사전지식이 부족한 일반 사용자가 일상에서 주로 사용되는 생활용어를 이용하여 키워드 기반의 법령정보 검색 사이트에서 정확한 법령정보 검색이 가능하도록 생활용어와 법률용어 간의 대응관계를 탐색하고 이를 이용하여 법령을 검색할 수 있는 방법론을 제안하고자 한다. 우선 생활용어와 법률용어 간의 대응관계를 발견하기 위해 본 논문에서는 사용자들의 집단지성을 활용한다. 이를 위해 사용자들이 블로그의 분류 및 관리, 검색에 활용하기 위해 작성한 태그 정보를 이용하여 질의어인 생활용어와 관련된 태그들을 수집한다. 수집된 태그들은 K-means 군집분석 기법을 통해 태그들을 클러스터링하고, 생활용어와 가장 가까운 법률용어를 찾기 위한 평가 방법을 통해 생활용어에 대응될 수 있는 적절한 법률용어를 선택한다. 선택된 법률용어는 해당 생활용어와 명시적인 관계성이 부여되며, 이러한 생활용어와 법률용어와의 관계는 온톨로지 기반의 시소러스를 기술하기 위한 SKOS를 이용하여 표현된다. 이렇게 구축된 온톨로지는 사용자가 생활용어를 이용하여 검색을 수행할 경우 생활용어에 대응되는 적절한 법률용어를 찾아 법령 검색을 수행하고 그 결과를 사용자에게 제시한다. 본 논문에서 제시하고자 하는 방법론을 통해 법령 및 법률용어에 관련된 사전 지식이 없는 일반 사용자도 편리하고 효율적으로 법령을 검색할 수 있는 서비스를 제공할 것으로 기대한다.

소셜 뉴스를 위한 시간 종속적인 메타데이터 기반의 컨텍스트 공유 프레임워크 (Context Sharing Framework Based on Time Dependent Metadata for Social News Service)

  • 가명현;오경진;홍명덕;조근식
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.39-53
    • /
    • 2013
  • 인터넷의 발달과 SNS의 등장으로 정보흐름의 방식이 크게 바뀌었다. 이러한 변화에 따라 소셜 미디어가 급부상하고 있으며 소셜 미디어와 비디오 콘텐츠가 융합된 소셜 TV, 소셜 뉴스의 중요성이 강조되고 있다. 이러한 환경 속에서 사용자들은 단순히 콘텐츠를 탐색만 하는 것이 아니라 같은 콘텐츠를 이용하고 있는 친구들이나 지인들과 콘텐츠에 대한 정보나 경험들을 공유하고 더 나아가 새로운 콘텐츠를 만들어내기도 한다. 하지만 기존의 소셜 뉴스에서는 이러한 사용자들의 특성을 반영해 주지 못하고 있다. 특히 이용자들의 참여성만을 고려하고 있어서 서비스간의 차별화가 어렵고 뉴스 콘텐츠에 대한 정보나 경험 공유 시 컨텍스트 공유가 어렵다는 문제가 있다. 이를 해결하기 위해 본 논문에서는 뉴스를 내용별로 분할하고 분할된 뉴스에서 추출된 시간 종속적인 메타데이터를 제공하는 프레임워크를 제안한다. 제안하는 프레임워크에서는 스토리 분할 방법을 이용하여 뉴스 대본을 내용별로 분할한다. 또한 뉴스 전체내용을 대표하는 태그, 분할된 뉴스를 나타내는 서브 태그, 분할된 뉴스가 비디오에서 시작하는 위치 즉, 시간 종속적인 메타데이터를 제공한다. 소셜 뉴스 이용자들에게 시간 종속적인 메타데이터를 제공한다면 이용자들은 전체의 뉴스 내용 중에 자신이 원하는 부분만을 탐색 할 수 있으며 이 부분에 대한 견해를 남길 수 있다. 그리고 뉴스의 전달이나 의견 공유 시 메타데이터를 함께 전달함으로써 전달하고자 하는 내용에 바로 접근이 가능하며 프레임워크의 성능은 추출된 서브 태그가 뉴스의 실제 내용을 얼마나 잘 나타내 주느냐에 따라 결정된다. 그리고 서브 태그는 스토리 분할의 정확성과 서브 태그를 추출하는 방법에 따라 다르게 추출된다. 이 점을 고려하여 의미적 유사도 기반의 스토리 분할 방법을 프레임워크에 적용하였고 벤치마크 알고리즘과 성능 비교 실험을 수행하였으며 분할된 뉴스에서 추출된 서브 태그들과 실제 뉴스의 내용을 비교하여 서브 태그들의 정확도를 분석하였다. 결과적으로 의미적 유사도를 고려한 스토리 분할 방법이 더 우수한 성능을 보였으며 추출된 서브 태그들도 컨텍스트와 관련된 단어들이 추출 되었다.

기업 간 특허인용 관계 결정요인에 관한 연구 : MR-QAP분석 (A Study on the Determinants of Patent Citation Relationships among Companies : MR-QAP Analysis)

  • 박준형;곽기영;한희준;김윤정
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.21-37
    • /
    • 2013
  • 최근 지식기반 사회의 진입과 더불어 지식재산에 대한 관심이 증가하고 있다. 특히 하이테크산업을 이끌고 있는 ICT기업들은 지식재산의 체계적 관리를 위하여 끊임없이 노력하고 있다. 기업의 지적 자본을 대표하는 특허정보가 지속적으로 축적됨에 따라 정량적인 분석이 가능해졌다. 특허정보를 통하여 특허수준부터 기업수준, 산업수준, 국가수준에 이르기 까지 다양한 수준에서의 분석이 가능하다. 특허정보는 기술 현황을 파악하거나 성과에 미치는 영향을 분석하는데 활용되고 있다. 네트워크를 통한 분석은 지식 영향의 흐름을 나타내며, 이를 통하여 기술의 변화를 확인할 수 있을 뿐만 아니라 앞으로의 연구 방향을 예측할 수 있다. 네트워크를 활용한 분석 분야에서는 기업이 차지하는 네트워크상에서의 위치가 기업성과에 미치는 영향을 다각도에서 분석하는 연구가 진행되고 있다. 특허 인용 정보를 활용한 분석은 크게 두 가지로, 인용 횟수를 활용하는 인용지표 분석과 인용관계를 바탕으로 한 네트워크 분석으로 나뉜다. 본 연구는 기업간 규모의 차이가 기업 간 특허 인용 관계에 미치는 영향을 분석하고자 하였다. S&P 500에 등록된 IT 및 통신서비스를 제공하는 74개 기업을 선정하였으며 기업 간 특허 인용 관계를 구하기 위하여 2009년, 2010년의 특허 인용 정보를 수집하여 기업 간 특허 인용 관계를 나타냈다. 또한 기업규모를 대표하는 지표로 기업 총 자산에 대한 정보를 수집하였다. 기업규모에 따라 외부 지식에 대한 의존도가 달라지는 선행연구를 통하여 기업규모가 기업간 특허 인용 관계에 미치는 영향을 알아보고자 하였다. 이에 기업 간 총 자산의 차이에 절대값을 취한 값을 기업 간 거리로 정의하였으며, 기업 간 규모의 단순 차이를 기업 간 계층으로 정의하여 새로운 소시오매트릭스를 생성하였다. 2010년도 기업간 특허 인용 관계를 나타낸 소시오매트릭스를 종속변수로 하였으며, 2009년도 기업 간 특허 인용 네트워크, 기업 간 거리 및 계층을 독립변수로 하여 QAP분석 및 MR-QAP분석을 실시하였다. QAP분석 결과 기업 간 거리와 계층은 특허 인용 관계에 유의한 영향을 미치는 것으로 나타났다. MR-QAP분석에는 2009년도 기업 간 특허 인용 관계와 기업 간 거리만 유의함을 확인할 수 있었다. 특히 2009년도 기업 간 특허 인용 관계가 2010년도 기업 간 특허 인용 관계에 가장 큰 영향력을 행사하는 것을 볼 수 있어 기업 간 특허 인용관계는 연속성이 존재하는 것으로 볼 수 있었다.

쇼핑몰 이미지 저작권보호를 위한 영상 워터마킹 (Image Watermarking for Copyright Protection of Images on Shopping Mall)

  • 배경율
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.147-157
    • /
    • 2013
  • 디지털 환경의 도래와 언제 어디서나 접근할 수 있는 고속 네트워크의 도입으로 디지털 콘텐츠의 자유로운 유통과 이용이 가능해졌다. 이러한 환경은 역설적으로 다양한 저작권 침해를 불러 일으키고 있으며, 온라인 쇼핑몰에서 사용하는 상품 이미지의 도용이 빈번하게 발생하고 있다. 인터넷 쇼핑몰에 올라오는 상품 이미지와 관련해서는 저작물성에 대한 시비가 많이 일어나고 있다. 2001년 대법원 판결에 의하면 햄 광고를 위하여 촬영한 사진은 단순히 제품의 모습을 전달하는 사물의 복제에 불과할 뿐 창작적인 표현이 아니라고 적시하였다. 다만 촬영자의 손해액에 대해서는 인정함으로써 광고사진 촬영에 소요되는 통상적인 비용을 손해액으로 산정하게 하였다. 상품 사진 이외의 실내사진이라 하여도 '한정된 공간에서 촬영되어 누가 찍어도 동일한 사진'이 나올 수 밖에 없는 경우에는 창작성을 인정하지 않고 있다. 2003년 서울지방법원의 판례는 쇼핑몰에 사용된 사진에서 피사체의 선정, 구도의 설정, 빛의 방향과 양의 조절, 카메라 각도의 설정, 셔터의 속도, 셔터찬스의 포착 기타 촬영방법, 현상 및 인화 등의 과정에서 촬영자의 개성과 창조성이 인정되면 저작권법에 의하여 보호되는 저작물에 해당한다고 선고하여 손해를 인정하였다. 결국 쇼핑몰 이미지도 저작권법상의 보호를 받기 위해서는 단순한 제품의 상태를 전달하는 것이 아니라 촬영자의 개성과 창조성이 인정될 수 있는 노력이 필요하다는 것이며, 이에 따라 쇼핑몰 이미지를 제작하는 비용이 상승하고 저작권보호의 필요성은 더욱 높아지게 되었다. 온라인 쇼핑몰의 상품 이미지는 풍경사진이나 인물사진과 같은 일반 영상과 달리 매우 독특한 구성을 갖고 있으며, 따라서 일반 영상을 위한 이미지 워터마킹 기술로는 워터마킹 기술의 요구사항을 만족시킬 수 없다. 쇼핑몰에서 주로 사용되는 상품 이미지들은 배경이 흰색이거나 검은색, 또는 계조(gradient)색상으로 이루어져 있어서 워터마크를 삽입할 수 있는 공간으로 활용이 어렵고, 약간의 변화에도 민감하게 느껴지는 영역이다. 본 연구에서는 쇼핑몰에 사용되는 이미지의 특성을 분석하고 이에 적합한 이미지 워터마킹 기술을 제안하였다. 제안된 이미지 워터마킹 기술은 상품 이미지를 작은 블록으로 분할하고, 해당 블록에 대해서 DCT 양자화 처리를 함으로써 워터마크 정보를 삽입할 수 있도록 하였다. 균일한 DCT 계수 양자화 값의 처리는 시각적으로 영상에 블록화 현상을 불러오기 때문에 제안한 알고리즘에서는 블록의 경계 면에 붙어있는 영상 값에 대해서는 양자화 값의 분배를 작게 하고, 경계 면에서 멀리 떨어져있는 영상 값에 대해서는 양자화 값의 분배를 크게 함으로써 영상의 객관적 품질뿐 아니라 시각적으로 느끼는 주관적 품질도 향상 시켰다. 제안한 알고리즘에 의해서 워터마크가 삽입된 쇼핑몰 이미지의 PSNR(Peak Signal to Noise Ratio)은 40.7~48.5[dB]로 매우 우수한 품질을 보였으며, 일반 쇼핑몰 이미지에서 많이 사용되는 JPEG 압축은 QF가 70 이상인 경우에는 BER이 0이 나왔다.

매체와 정보유형에 따른 정보확산 차이에 대한 연구 (A Study on the Differences of Information Diffusion Based on the Type of Media and Information)

  • 이상근;김진화;백헌;이의방
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.133-146
    • /
    • 2013
  • 본 연구는 매체에 따른 정보확산차이와, 정보유형을 근접성의 정도로 분류하여 정보확산차이를 보고자 하였다. 이는 기존의 전통매체인 종이신문이나 TV, 라디오와 같이 일방적으로 전달되는 매체의 정보확산과는 달리, 온라인 뉴스나 소셜네트워크서비스와 같이 쌍방향적 소통이 가능한 매체 특성으로 인한 정보확산은 차이가 있을 것이라 판단하였다. 따라서 본 연구에서는 개인이 직접 기사를 올리고 다른 사람들과 공유할 수 있는 블로그(Blog) 매체와 온라인 뉴스(News) 매체에 따른 정보확산차이를 비교해 보고자 하였다. 또한 심리적, 지리적 근접성에 따른 정보확산차이를 보고자 정보의 유형을 세분화 하였다. 이는 수용자가 정보의 근접성이 높고 낮음의 차이 정도에 따라 정보유형에 따른 가치평가의 기준이 다를 것이라 보았다. 정보유형은 연예, 시사(국제), 제품으로 선정하였고, 세부내용은 연예와 관련된 '싸이 젠틀맨', 시사와 관련된 '중국 쓰촨성 지진', 제품과 관련된 '갤럭시 S4'를 선택하였다. 본 연구의 분석방법은 Bass 확산모형을 이용하여 증명하고자 하였다. Bass 확산모형은 혁신효과(Innovation effect)와 모방효과(Imitation effect)로 나눠서 측정한다. 혁신효과는 서비스 초기에 영향을 미치는 변수로 추정가능하며, 모방효과는 서비스 초기 단계 이후에 영향을 미치는 변수로 구전의 영향을 받는다고 볼 수 있다. 본 연구 결과 첫째, 매체에 따른 정보확산 흐름은 비슷하게 나타났다. 비록 두 매체의 특성에 차이점이 있을지라도, 뉴스가치 중 하나인 근접성에 따른 정보확산은 비슷한 형태를 보인다고 할 수 있다. 두 번째, 근접성에 기반한 정보유형별 정보확산에는 차이가 있었다. 수용자 입장에서 관련성이 높은 제품과 연예는 모방효과가 높게 나타났으며, 시사의 경우는 모방효과보다 혁신효과가 높게 나타났다. 이는 제품관련 정보나 연예관련 정보와 같이 개인에게 심리적으로나 지리적으로 근접성이 높은 정보는, 국제 재해와 관련된 시사정보와 같이 근접성이 낮은 정보에 비해서, 개인의 모방효과가 활발히 진행된다고 볼 수 있다. 연구결과를 통해 매체와 정보유형에 따라 정보확산 흐름변화를 고찰하여 실무에 활용한다면 도움이 될 것이라 본다. 하지만, 정보유형을 각각 하나의 기사만을 택하여 보았기 때문에 이 결과를 통한 정보확산 차이라고 규정짓기에는 sample size가 너무 작아 일반화에 어려움이 있다. 향후 연구에서는 소셜미디어 종류를 블로그 뿐 만 아니라 다양한 소셜미디어를 추가하여 비교해 볼 필요가 있을 것이다. 또한 정보의 유형을 근접성 측면뿐 만 아니라 다른 측면도 고려해 봐야 할 것이다.

Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지 (Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone)

  • 하으뜸;김정민;류광렬
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.123-132
    • /
    • 2013
  • 최근 스마트 폰에 다양한 센서를 내장할 수 있게 되었고 스마트폰에 내장된 센서를 이용항 동작 인지에 관한 연구가 활발히 진행되고 있다. 스마트폰을 이용한 동작 인지는 노인 복지 지원이나 운동량 측정. 생활 패턴 분석, 운동 패턴 분석 등 다양한 분야에 활용될 수 있다. 하지만 스마트 폰에 내장된 센서를 이용하여 동작 인지를 하는 방법은 사용되는 센서의 수에 따라 단일 센서를 이용한 동작인지와 다중 센서를 이용한 동작인지로 나눌 수 있다. 단일 센서를 이용하는 경우 대부분 가속도 센서를 이용하기 때문에 배터리 부담은 줄지만 다양한 동작을 인지할 때에 특징(feature) 추출의 어려움과 동작 인지 정확도가 낮다는 문제점이 있다. 그리고 다중 센서를 이용하는 경우 대부분 가속도 센서와 중력센서를 사용하고 필요에 따라 다른 센서를 추가하여 동작인지를 수행하며 다양한 동작을 보다 높은 정확도로 인지할 수 있지만 다수의 센서를 사용하기 때문에 배터리 부담이 증가한다는 문제점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 스마트 폰에 내장된 가속도 센서를 이용하여 다양한 동작을 높은 정확도로 인지하는 방법을 제안한다. 서로 다른 10가지의 동작을 높을 정확도로 인지하기 위해 원시 데이터로부터 17가지 특징을 추출하고 각 동작을 분류하기 위해 Ensemble of Nested Dichotomies 분류기를 사용하였다. Ensemble of Nested Dichotomies 분류기는 다중 클래스 문제를 다수의 이진 분류 문제로 변형하여 다중 클래스 문제를 해결하는 방법으로 서로 다른 Nested Dichotomy 분류기의 분류 결과를 통해 다중 클래스 문제를 해결하는 기법이다. Nested Dichotomy 분류기 학습에는 Random Forest 분류기를 사용하였다. 성능 평가를 위해 Decision Tree, k-Nearest Neighbors, Support Vector Machine과 비교 실험을 한 결과 Ensemble of Nested Dichotomies 분류기를 사용하여 동작 인지를 수행하는 것이 가장 높은 정확도를 보였다.

집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법 (Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach)

  • 윤영수
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.55-79
    • /
    • 2013
  • 본 연구에서는 집중형 센터를 가진 역물류네트워크(Reverse logistics network with centralized centers : RLNCC)를 효율적을 해결하기 위한 혼합형 유전알고리즘(Hybrid genetic algorithm : HGA) 접근법을 제안한다. 제안된 HGA에서는 유전알고리즘(Genetic algorithm : GA)이 주요한 알고리즘으로 사용되며, GA 실행을 위해 0 혹은 1의 값을 가질 수 있는 새로운 비트스트링 표현구조(Bit-string representation scheme), Gen and Chang(1997)이 제안한 확장샘플링공간에서의 우수해 선택전략(Elitist strategy in enlarged sampling space) 2점 교차변이 연산자(Two-point crossover operator), 랜덤 돌연변이 연산자(Random mutation operator)가 사용된다. 또한 HGA에서는 혼합형 개념 적용을 위해 Michalewicz(1994)가 제안한 반복적언덕오르기법(Iterative hill climbing method : IHCM)이 사용된다. IHCM은 지역적 탐색기법(Local search technique) 중의 하나로서 GA탐색과정에 의해 수렴된 탐색공간에 대해 정밀하게 탐색을 실시한다. RLNCC는 역물류 네트워크에서 수집센터(Collection center), 재제조센터(Remanufacturing center), 재분배센터(Redistribution center), 2차 시장(Secondary market)으로 구성되며, 이들 각 센터 및 2차 시장들 중에서 하나의 센터 및 2차 시장만 개설되는 형태를 가지고 있다. 이러한 형태의 RLNCC는 혼합정수계획법(Mixed integer programming : MIP)모델로 표현되며, MIP 모델은 수송비용, 고정비용, 제품처리비용의 총합을 최소화하는 목적함수를 가지고 있다. 수송비용은 각 센터와 2차 시장 간에 제품수송에서 발생하는 비용을 의미하며, 고정비용은 각 센터 및 2차 시장의 개설여부에 따라 결정된다. 예를 들어 만일 세 개의 수집센터(수집센터 1, 2, 3의 개설비용이 각각 10.5, 12.1, 8.9)가 고려되고, 이 중에서 수집센터 1이 개설되고, 나머지 수집센터 2, 3은 개설되지 않을 경우, 전체고정비용은 10.5가 된다. 제품처리비용은 고객으로부터 회수된 제품을 각 센터 및 2차 시장에서 처리할 경우에 발생되는 비용을 의미한다. 수치실험에서는 본 연구에서 제안된 HGA접근법과 Yun(2013)의 연구에서 제안한 GA접근법이 다양한 수행도 평가 척도에 의해 서로 비교, 분석된다. Yun(2013)이 제안한 GA는 HGA에서 사용되는 IHCM과 같은 지역적탐색기법을 가지지 않는 접근법이다. 이들 두 접근법에서 동일한 조건의 실험을 위해 총세대수 : 10,000, 집단의 크기 : 20, 교차변이 확률 : 0.5, 돌연변이 확률 : 0.1, IHCM을 위한 탐색범위 : 2.0이 사용되며, 탐색의 랜덤성을 제거하기 위해 총 20번의 반복실행이 이루어 졌다. 사례로 제시된 두 가지 형태의 RLNCC에 대해 GA와 HGA가 각각 실행되었으며, 그 실험결과는 본 연구에서 제안된 HGA가 기존의 접근법인 GA보다 더 우수하다는 것이 증명되었다. 다만 본 연구에서는 비교적 규모가 작은 RLNCC만을 고려하였기에 추후 연구에서는 보다 규모가 큰 RLNCC에 대해 비교분석이 이루어 져야 할 것이다.

SaaS 기업의 차별화 및 가격전략이 고객획득성과에 미치는 영향: SaaS 기술성숙도 수준의 매개효과 및 조절효과를 중심으로 (Effects of firm strategies on customer acquisition of Software as a Service (SaaS) providers: A mediating and moderating role of SaaS technology maturity)

  • 채성욱;박승범
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.151-171
    • /
    • 2014
  • SaaS는 사용자가 필요한 소프트웨어를 인터넷을 통해 원격으로 서비스 받을 수 있도록 하는 모델로 소프트웨어 시장에서 차지하는 비중이 커짐과 동시에 관련 분야의 비즈니스 요구사항의 증가에 따라 지속적인 성장이 기대되는 분야이다. 이에 본 연구는 SaaS 공급업체들을 대상으로 기업에서 추구하는 차별화 전략 및 낮은 가격전략과 고객획득성과와의 관계를 살펴보고 더 나아가 이들 간의 관계에서 SaaS 기술성숙도 수준의 매개효과와 조절효과를 알아보고자 하였다. 이를 위해 SaaS 제공업체 및 국내 CNK(commerce net Korea) 데이터베이스에 등록된 업체의 어플리케이션을 대상으로, 175개 기업 총 199개 SaaS 전략사업단위의 설문결과를 분석에 활용하였다. SaaS 기술성숙도가 차별화전략 및 낮은가격전략과 고객획득성과와의 관계를 매개하는지 검증하기 위해 Baron and Kenny (1986)가 제안한 절차에 따라 회귀분석을 실시하였고, SaaS 기술성숙도의 조절효과를 살펴보기 위해 위계적 회귀분석(hierarchical regression analysis) 방법을 적용한 상호작용효과를 검증하였다. 분석결과, 첫째, SaaS 제공업체가 추구하는 차별화 전략(업종특화, 파트너활용, 전담인력수) 및 낮은 가격전략(월이용료, 초기설치비)과 같은 기업전략은 고객획득에 긍정적인 영향을 미치는 것으로 나타났다. 또한, SaaS 공급업체의 기술성숙도 수준(어플리케이션 서비스 제공, 웹 기본 어플리케이션, 웹 서비스 어플리케이션)과 고객 획득성과 간에 유의미한 긍정적인 관계가 있는 것으로 확인되었다. 마지막으로, SaaS 기술성숙도 수준의 기업전략과 고객획득성과와의 관계에 대한 조절효과는 주로 차별화 전략에 대해 나타난 반면, 매개효과는 주로 낮은 가격전략에 대해 나타남을 확인하였다.

지식 공유의 파레토 비율 및 불평등 정도와 가상 지식 협업: 위키피디아 행위 데이터 분석 (Pareto Ratio and Inequality Level of Knowledge Sharing in Virtual Knowledge Collaboration: Analysis of Behaviors on Wikipedia)

  • 박현정;신경식
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.19-43
    • /
    • 2014
  • 전체 결과의 80%가 전체 원인의 20%에 의해 일어난다는 파레토 법칙(Pareto principle)은 상위 20%의 핵심 고객에 대한 우선적인 마케팅을 비롯하여 기업 경영의 많은 부분에서 적용되어 왔다. 파레토 법칙과는 대조적으로, 80%의 사소한 다수가 20%의 핵심적인 소수보다 우월한 가치를 창출한다는 롱테일 법칙(Long Tail theory)은 ICT(Information and Communication Technology)의 발전과 함께 새로운 경영 패러다임으로 주목 받아오고 있다. 본 연구의 목적은 경영 현장에서 양대 흐름을 형성해온 이러한 법칙들이 변화무쌍한 글로벌 가상화 환경에서 기업의 핵심적인 성공 요인이라고 할 수 있는 가상 지식 협업에는 어떻게 관련되는지를 규명하는 것이다. 이를 위해, 대표적인 가상 지식 협업 커뮤니티인 위키피디아에서 품질 최상위 등급인 피쳐드 아티클(Featured Article) 레벨로 승급된 2,978개의 아티클에 대한 협업 행위를 분석하였다. 즉, 각 아티클 그룹에서 편집 횟수 기준 상위 20%에 속하는 참여자들의 총 편집 횟수가 전체 편집 횟수에서 차지하는 비율인 파레토 비율(Pareto ratio)이 지식 협업 효율성과 어떤 관계를 가지고 있는지를 도출하였다. 그리고, 이러한 연구를 편집 참여를 통한 지식 공유에 대한 전체적인 불평등 정도를 나타내는 지니 계수(Gini coefficient)의 영향 및 그룹의 작업 특성을 반영하도록 확장하였다. 결과적으로, 지식 공유의 파레토 비율과 지니 계수가 증가하면 지식 협업 효율성도 높아지지만, 이러한 변수들이 일정 수준 이상으로 증가하면 오히려 지식 협업 효율성이 낮아지는 역 U자(inverted U-shaped) 관계가 있음을 확인하였다. 그리고, 이러한 관계는 인지적 노력을 상대적으로 더 많이 요구하는 학문적인 특성의 작업에서 더 민감하게 작용하는 것으로 보인다.