• Title/Summary/Keyword: 지구-달 전이궤적

Search Result 9, Processing Time 0.027 seconds

A Parametric Study on Optimal Earth-Moon Transfer Trajectory Design Using Mixed Impulsive and Continuous Thrust (혼합 추력 방식의 지구-달 최적 전이궤적 설계인자에 따른 비교연구)

  • Lee, Dae-Ro;No, Tae-Soo;Lee, Ji-Marn;Jeon, Gyeong-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.11
    • /
    • pp.1021-1032
    • /
    • 2011
  • This paper presents the results of a parametric study for the design of optimal Earth-Moon transfer trajectory using mixed impulsive and continuous thrust. Various types of the optimal Earth-Moon transfer trajectories were designed by adjusting the relative weight between the impulsive and the continuous thrust, and flight time. Two very different transfer trajectories can be obtained by different combination of design parameters. Furthermore, it was found that all thus designed trajectories permit the ballistic capture by the Moon gravity. Finally, the required thrust profiles are presented and analyzed in detail.

Mission Design and Analysis based on SEM Angle by Using Variable Coast During 3.5 Earth-Moon Phasing Loop Transfer (Variable Coast를 이용하는 3.5 지구-달 위상전이궤적에서 SEM 각도에 따른 임무설계 및 해석)

  • Choi, Su-Jin;Lee, Donghun;Lim, Seong-Bin;Choi, Suk-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.68-77
    • /
    • 2018
  • In order to analyze the overall characteristics of the lunar orbiter, the Variable Coast method, which can be launched everyday, is applied to the 3.5 phasing loop transfer trajectory. The mission scenario for the entire process from launching to entering the lunar orbit is set up and performed simulation by selecting the launch pad and launch vehicle. In particular, the SEM(Satellite-Earth-Moon) angle defined in Earth-Moon rotating frame is an important constraint to comprehensively evaluate the 3.5 phasing loop transfer trajectory. The simulation using SEM angle is analyzed from various viewpoints such as launch epoch, coast duration, perigee altitude and ${\Delta}V$ not only trans-lunar trajectory but lunar orbit insertions and the optimum SEM angle is suggested in this study. It is expected that this results will be helpful to evaluate the characteristics of the 3.5 phasing loop transfer trajectory according to the launch vehicle selection by comparison with Fixed Coast analysis results in the future.

An Analysis of Mid-Course Correction Maneuvers according to Launch-Vehicle Dispersion in Earth-Moon Phasing-Loop Trajectory (지구-달 위상전이궤적에서 발사체 투입오차가 중간경로수정기동에 미치는 영향 분석)

  • Choi, Su-Jin;Lee, Dong-Hun;Suk, Byong-Suk;Min, Seung-Yong;Rew, Dong-Young
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.35-40
    • /
    • 2016
  • Mid-course correction maneuvers (MCCMs) are necessary to correct the launch-vehicle dispersion to go to the Moon. There were 3 or 4 MCCMs needed for a direct transfer trajectory. But the strategy for MCCMs of the phasing-loop trajectory is different, because it has a longer trans-lunar trajectory than direct transfer does. An orbiter using a phasing-loop trajectory has several rotations of the Earth, so the orbiter has several good places, such as perigee and apogee, to correct the launch-vehicle dispersion. Although launch dispersion is relatively high, the launch vehicle is not as accurate as we expected. A good MCCM strategy can overcome the high dispersion by using small-magnitude correction maneuvers. This paper describes the phasing-loops sequence and strategy to correct high launch-vehicle dispersions.

Preliminary Mission Design for a Lunar Explorer using Small Liquid Upper Stage (소형 액체상단을 이용한 달 탐사선 임무 예비설계)

  • Choi, Su-Jin;Lee, Hoonhee;Lee, Sang-Il;Lee, Seok-Hee;Lee, Keejoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2020
  • Upper stage of launch vehicle mainly injects a lunar explorer from low earth orbit to the moon at a distance of 380,000 km. In foreign lunar explorer, the upper stage is separated from the explorer after the explorer is injected into the earth-moon transfer trajectory, and the lunar explorer then uses on-board propellant to carry out mid-course correction maneuvers and lunar orbit insertion maneuvers. This study describes a newly presented small liquid upper stage. Using a small liquid upper stage with a wet mass of 2.9 tonnes, the lunar explorer not only can be injected earth-moon transfer trajectory but also can be performed lunar orbit insertion. This study provides acceptable mass range of the lunar explorer and the scope of acceptable mission range also describes based on the launch from Naro Space Center.

A Study on Optimal Earth-Moon Transfer Orbit Design Using Mixed Impulsive and Continuous Thrust (순간 및 연속 추력을 이용한 지구-달 최적 전이궤도 설계에 관한 연구)

  • No, Tae-Soo;Jeon, Gyeong-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.684-692
    • /
    • 2010
  • Based on the planar restricted three body problem formulation, optimized trajectories for the Earth-Moon transfer are obtained. Mixed impulsive and continuous thrust are assumed to be used, respectively, during the Earth departure and Earth-Moon transfer/Moon capture phases. The continuous, dynamic trajectory optimization problem is reformulated in the form of discrete optimization problem by using the method of direct transcription and collocation, and then is solved using the nonlinear programming software. Representative results show that the shape of optimized trajectory near the Earth departure and the Moon capture phases is dependent upon the relative weight between the impulsive and the continuous thrust.

Mission Design for a Lunar Orbiter Launched by KSLV-II (한국형발사체를 사용한 달궤도선의 임무 설계)

  • Song, Eun-Jung;Park, Chang-Su;Cho, Sang-Bum;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.108-116
    • /
    • 2009
  • This paper considers the trajectory design problem for a lunar orbiter when launched by KSLV-II. KSLV-II puts its kick motor stage and lunar orbiter into a low earth orbit, and then the kick motor stage performed the translunar injection. To simulate more realistic situations, TLI (Trans-Lunar Injection) and LOI (Lunar Orbit Injection) maneuvers are modeled as finite burns. The feasibility of the lunar mission by KSLV-II are confirmed by the numerical results that show the reasonable required-velocity and propellant usage.

  • PDF

Design and Analysis of Korean Lunar Orbiter Mission using Direct Transfer Trajectory (직접 전이궤적을 이용한 한국형 달 궤도선 임무설계 및 분석)

  • Choi, Su-Jin;Song, Young-Joo;Bae, Jonghee;Kim, Eunhyeuk;Ju, Gwanghyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.950-958
    • /
    • 2013
  • The Lunar orbiter is expected to be inserted into a ~300km low Earth orbit using Korea Space Launch Vehicle-II(KSLV-II). After the states are successfully determined with obtained tracking data, the Trans Lunar Injection(TLI) burn has to be done at appropriate epoch to send the lunar orbiter to the Moon. In this study, we describe in detail the mission scenario of the Korean lunar orbiter from the launch at NARO Space Center to lunar orbit insertion(LOI) stage following direct transfer trajectory. We investigate the launch window including launch azimuth, delta-V profile according to TLI and LOI burn positions. We also depict the visibility conditions of ground stations and solar eclipse duration to understand the characteristics of the direct transfer trajectory. This paper can be also helpful not only for overall understanding of ${\Delta}V$ trend by changing TOF and coasting time but for selecting launch epoch and control parameters to decrease fuel consumption.

A Study on the Analysis of Visibility between a Lunar Orbiter and Ground Stations for Trans-Lunar Trajectory and Mission Orbit (지구-달 전이궤적 및 임무 궤도에서 궤도선과 지상국의 가시성 분석에 관한 연구)

  • Choi, Su-Jin;Kim, In-Kyu;Moon, Sang-Man;Kim, Changkyoon;Rew, Dong-young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.218-227
    • /
    • 2016
  • Korean government plans to launch a lunar orbiter and a lander to the Moon by 2020. Before launch these two proves, an experimental lunar orbiter will be launched by 2018 to obtain key space technologies for the lunar exploration. Several payloads equipped in experimental lunar orbiter will monitor the surface of the Moon and will gather science data. Lunar orbiter sends telemetry and receives tele-command from ground using S-band while science data is sent to ground stations using X-band when the visibility is available. Korean deep space network will be mainly used for S and X-band communication with lunar orbiter. Deep Space Network or Universal Space Network can also be used for the S-band during trans-lunar phase when korean deep space network is not available and will be used for the S-band in normal mission orbit as a backup. This paper analyzes a visibility condition based on the combination of various ground antennas and its mask angles according to mission scenario to predict the number of contacts per day and to build an operational scenario for the lunar orbiter.

Preliminary Mission Design of Transfer Orbit of a Lunar Lander Launched by a Korean Space Launch Vehicle (국내 발사체를 이용한 달착륙선 발사시 전이 궤도 예비 임무 설계)

  • Song, Eun-Jung;Lee, Sang-il;Choi, iyoung;Sun, Byung-Chan;Roh, Woong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.867-875
    • /
    • 2022
  • The preliminary mission analysis of a lunar lander, which is mounted on the upper stage of a Korean space launch vehicle, is performed when landing on the moon through a trans-lunar injection maneuver after being injected into the earth's low orbit by th launcher in this paper. Both direct landing and orbital landing methods, which have each advantage and disadvantages, are applied and their transfer orbit characteristics are analyzed according to the launch date when launching in lunar October 2030. We also analyzed the launch dates which satisfying eclipse conditions, solar elevation conditions, and tracking time intervals such as the US lunar lander Surveyor-1. The obtained results show that the most appropriate launch date is the 4th day of lunar October in case of direct landing method, and the 3rd day in case of indirect landing method, since the argument of perigee of the trans-lunar injection orbit and eclipse conditions are favorable in the dates.