• Title/Summary/Keyword: 지구 관측 위성

Search Result 607, Processing Time 0.028 seconds

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.

Recovery of Mass Changes in Antarctic Ice-Sheet based on the Regional Climate Model, RACMO (RACMO 기후 모델에 기반한 남극 빙상 질량 변동의 재현)

  • Eom, Jooyoung;Rim, Hyoungrea
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.147-157
    • /
    • 2020
  • Mass change in the Antarctic Ice Sheet(AIS) is the most important indicator of changes in Earth's climate system including global mean sea level rise that are largely affected by ongoing global warming. In this study, AIS mass variations are examined with satellite gravity data and outputs from a regional climate model. The analysis of gravity data shows that along the coastal region the Western AIS has experienced a continuous and significant ice loss while a slight increasing in the Eastern AIS during the study period (2002.08-2016.08). The temporal and spatial variations in ice mass changes are recovered by a regional climate model, but the recovered amplitudes are much smaller than those of observations. This under-estimation is remarkably resolved by modifying a base flow field for the ice discharge. The recovered estimates based on the ice-flow field can explain about 97% of the rate of mass change in observations before 2009. This implies that changes in ice flow dynamics along the coast line plays a pivotal role in regulating long-term budget of ice mass in AIS.

An analysis of Characteristics of Heavy Rainfall Events over Yeongdong Region Associated with Tropopause Folding (대류권계면 접힘에 의한 영동지방 집중호우사례의 특성분석)

  • Lee, Hye-Young;Ko, Hye-Young;Kim, Kyung-Eak;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.354-369
    • /
    • 2010
  • The synoptic and kinematic characteristics of a heavy rainfall that occurred in Gangneung region on 22 to 24 October 2006 were investigated using weather maps, infrared images, AWS observation data and NCEP global final analyses data. The total amount of rainfall observed in the region for the period was 316.5 mm, and the instanteneous maximum wind speed was $63.7m\;s^{-1}$. According to the analysis of weather maps, before the starting of the heavy rainfall, an extratropical low pressure system was developed in the middle region of the Korean Peninsula, and an inverted trough was formed in the northern region of the peninsula. In addition, a jet stream on the upper charts of 300 hPa was located over the Yellow Sea and the southern boundary of the peninsula. A cutoff low in the cyclonic shear side of the upper jet streak, which was linked to an anomaly of isentropic potential vorticity, was developed over the northwestern part of the peninsula. And there are analyzed potential vorticity and wind, time-height cross section of potential vorticity, vertical air motion, maximums of the divergence and convergence and vertical distribution of potential temperature in Gangneung region. The analyzed results of the synoptic conditions and kinematic processes strongly suggest that the tropopause folding made a significant role of initializing the heavy rainfall.

Development of Meso-scale Short Range NWP System for the Cheju Regional Meteorological Office, Korea (제주 지역에 적합한 중규모 단시간 예측 시스템의 개발)

  • Kim, Yong-Sang;Choi, Jun-Tae;Lee, Yong-Hee;Oh, Jai-Ho
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.186-194
    • /
    • 2001
  • The operational meso-scale short range NWP system was developed for Cheju Regional Meteorological Office located at Cheju island, Korea. The Central Meteorological Service Center, KMA has reported the information on numerical weather prediction every 12 hours. But this information is not enough to determine the detail forecast for the regional meteorological office because the terrain of the Korean peninsula is very complex and the resolution of the numerical model provided by KMA headquarter is too coarse to resolve the local severe weather system such as heavy rainfall. LAPS and MM5 models were chosen for three-dimentional data assimilation and numerical weather prediction tools respectively. LAPS was designed to provide the initial data to all regional numerical prediction models including MM5. Synoptic observational data from GTS, satellite brightness temperature data from GMS-5 and the composite reflectivity data from 5 radar sites were used in the LAPS data assimilation for producing the initial data. MM5 was performed on PC-cluster based on 16 pentium CPUs which was one of the cheapest distributed parallel computer in these days. We named this system as Halla Short Range Prediction System (HSRPS). HSRPS was verified by heavy rainfall case in July 9, 1999, it showed that HSRPS well resolved local severe weather which was not simulated by 30 km MM5/KMA. Especially, the structure of rainfall amount was very close to the corresponding observation. HSRPS will be operating every 6 hours in the Cheju Regional Meteorological Office from April 2000.

  • PDF

Opto-mechanical Analysis for Primary Mirror of Earth Observation Camera of the MIRIS (MIRIS EOC 주경의 광기계 해석)

  • Park, Kwi-Jong;Moon, Bong-Kon;Park, Sung-Jun;Park, Young-Sik;Lee, Dae-Hee;Ree, Chang-Hee;Nah, Jak-Young;Jeong, Woog-Seob;Pyo, Jeong-Hyun;Lee, Duk-Hang;Nam, Uk-Won;Rhee, Seung-Wu;Yang, Sun-Choel;Han, Won-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.262-268
    • /
    • 2011
  • MIRIS(Multi-purpose Infra-Red Imaging System) is the main payload of the STSAT-3(Korea Science and Technology Satellite. 3), which is being developed by KASI(Korea Astronomy & Space Institute). EOC(Earth Observation Camera), which is one of two infrared cameras in MIRIS, is the camera for observing infrared rays from the Earth in the range of $3{\sim}5{\mu}m$. The optical system of the EOC is a Cassegrain prescription with aspheric primary and secondary mirrors, and its aperture is 100mm. A ring type flexure supports the EOC primary mirror with pre-loading in order to withstand expected load due to the shock and vibration from the launcher. Here we attempt to use the same mechanism by which a retainer supports the lens. Through opto-mechanical analysis it was confirmed that the EOC primary mirror is effectively supported.

Mapping CO2 Emissions Using SNPP/VIIRS Nighttime Light andVegetation Index in the Korean Peninsula (SNPP/VIIRS 야간조도와 식생지수를 활용한 한반도 CO2 배출량 매핑)

  • Sungwoo Park;Daeseong Jung;Jongho Woo;Suyoung Sim;Nayeon Kim;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.247-253
    • /
    • 2023
  • As climate change problem has recently become serious, studies are being conducted to identify carbon dioxide (CO2) emission dynamics based on satellite data to reduce emissions. It is also very important to analyze spatial patterns by estimating and mapping CO2 emissions dynamic. Therefore, in this study, CO2 emissions in the Korean Peninsula from 2013 to 2020 were estimated and mapped. To spatially estimate and map emissions, we use the enhanced vegetation index adjusted nighttime light index, an index that combines nighttime light (NTL) and vegetation index, to map both areas where NTL is observed and areas where NTL is not observed. In order to spatially estimate and map CO2 emissions, the total annual emissions of the Korean Peninsula were calculated, resulting in an increase of 11% from 2013 to 2017 and a decrease of 13% from 2017 to 2020. As a result of the mapping, it was confirmed that the spatial pattern of CO2 emissions in the Korean Peninsula were concentrated in urban areas. After being divided into 17 regions, which included the downtown area, the metropolitan area accounted for roughly 40% of CO2 emissions in the Korean Peninsula. The region that exhibited the most significant change from 2013 to 2020 was Sejong City, showing a 96% increase.

A Technique Assessing Geological Lineaments Using Remotely Sensed Data and DEM : Euiseons Area, Kyungsang Basin (원격탐사자료와 수치표고모형을 이용한 지질학적 선구조 분석기술: 경상분지 의성지역을 중심으로)

  • 김원균;원중선;김상완
    • Korean Journal of Remote Sensing
    • /
    • v.12 no.2
    • /
    • pp.139-154
    • /
    • 1996
  • In order to evaluate the sensor`s look direction bias in the Landsat TM image and to estimate trends of primary geological lineaments, we have attempted to systematically compare lineaments in TM image, relief shadowed DEM's, and actual lineaments of geologic and topographic map through the Hough transform technique. Hough transform is known to be very effective to estimate the trend of geological lineaments, and help us to obtain the true trends of lineaments. It is often necessary to compensate the preferential enhancements of terrain lineaments in a TM image occurred by to look direction bias, and that can be achieved by utilizing an auxiliary data. In this study, we have successfully adopted the relief shadowed DEM in which the illuminating azimuth angle is perpendicular to look direction of a TM image for assessing true trends of geological lineaments. The results also show that the sum of four relief shadowed DEM's directional components can possibly be used as an alternative. In Euiseong-gun area where Sindong Group and Mayans Group are mainly distributed, geological lineaments trending $N5^{\circ}$~$10^{\circ}$W are dominant, while those of $N55^{\circ}$~$65^{\circ}$ W are major trends in Cheongsong-gun area where Hayang Group, Yucheon Group and Bulguksa Granite are distributed. Using relief shadowed DEM as an auxiliary data, we found the $N55^{\circ}$~$65^{\circ}$ W lineaments which are not cleanly observed in TM image over Euiseong-gun area. Compared with the trend of Gumchon and Gaum strike-slip faults, these lineaments are considered to be an extension of the faults. Therefore these strike-slip faults possibly extend up to Sindong Group in the northwest parts in the study area.

An Analysis of the Range of Brightness Temperature Differences Associated with Ground Based Mass Concentrations for Detecting the Large-scale Transport of Haze (광역적 이동 연무 탐지를 위한 지상 질량 농도를 고려한 적외채널 밝기온도차 경계값 범위 분석)

  • Kim, Hak-Sung;Chung, Yong-Seung;Cho, Jae-Hee
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.434-447
    • /
    • 2016
  • This study analyzed mass concentrations of PM10 and PM2.5, as measured at Tae-ahn and Gang-nae, Cheongju in central Korea over the period from 2011 to 2015. Higher mass concentrations of PM10, with the exception of dustfall cases during the period of winter and spring, reflected the influence of a prevailing westerly airflow, while the level of PM10 stayed at a low level in summer, reflecting the influence of North Pacific air mass and frequent rainfall. Accordingly, cases where a daily PM10 average of $81{\mu}gm^{-3}$ or over (exceeding the status of fine dust particles being 'a little bit bad') were often observed during the period of winter and spring, with more cases occurring in parts of Tae-ahn that are located close to the sources of pollutant emission in eastern China. Dustfall usually originated from dust storms made up of particles $2.5{\mu}m$ or over in diameter. However, anthropogenic haze displayed a high composition ratio of particulate less than $2.5{\mu}m$ in diameter. Accordingly, brightness temperature difference (BTD) values from the Communication, Ocean and Meteorological Satellite (COMS) were $-0.5^{\circ}K$ or over in haze with fine particulate. PM10 mass concentrations and NOAA 19 satellite BTD for haze cases were analyzed. Though PM10 mass concentrations were found to be lower than $200{\mu}g\;m^{-3}$, the mass concentration ratio of PM2.5/PM10 was measured as higher than 0.4 and BTD was found to be distributed in the range from -0.3 to $0.5^{\circ}K$. However, the BTD of dustfall cases exceeding $190{\mu}g\;m^{-3}$, were found to be less than 0.4 and BTD was found to be distributed in the range less than $-0.7^{\circ}K$. The result of applying BTD threshold values of the large-scale transport of haze proved to fall into line with the range over which aerosols of MODIS AOD and OMI AI were distributed.

Dst Prediction Based on Solar Wind Parameters (태양풍 매개변수를 이용한 Dst 예측)

  • Park, Yoon-Kyung;Ahn, Byung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.425-438
    • /
    • 2009
  • We reevaluate the Burton equation (Burton et al. 1975) of predicting Dst index using high quality hourly solar wind data supplied by the ACE satellite for the period from 1998 to 2006. Sixty magnetic storms with monotonously decreasing main phase are selected. In order to determine the injection term (Q) and the decay time ($\tau$) of the equation, we examine the relationships between $Dst^*$ and $VS_s$, ${\Delta}Dst^*$ and $VS_s$, and ${\Delta}Dst^*$ and $Dst^*$ during the magnetic storms. For this analysis, we take into account one hour of the propagation time from the ACE satellite to the magnetopause, and a half hour of the response time of the magnetosphere/ring current to he solar wind forcing. The injection term is found to be $Q(nT/h)\;=\;-3.56VS_s$ for $VS_s$ > 0.5mV/m and Q(nT=h) = 0 for $VB_s\;{\leq}\;0.5mV/m$. The $\tau$ (hour) is estimated as $0.060Dst^*\;+\;16.65$ for $Dst^*$ > -175nT and 6.15 hours for $Dst^*\;{\leq}\;-175nT$. Based on these empirical relationships, we predict the 60 magnetic storms and find that the correlation coefficient between the observed and predicted $Dst^*$ is 0.88. To evaluate the performance of our prediction scheme, the 60 magnetic storms are predicted again using the models by Burton et al. (1975) and O'Brien & McPherron (2000a). The correlation coefficients thus obtained are 0.85, the same value for both of the two models. In this respect, our model is slightly improved over the other two models as far as the correlation coefficients is concerned. Particularly our model does a better job than the other two models in predicting intense magnetic storms ($Dst^*\;{< \atop \sim}\;-200nT$).

On the Observation of Sandstorms and Associated Episodes of Airborne Dustfalls in the East Asian Region in 2005 (2005년 동아시아 지역에서 발생한 모래폭풍과 먼지침전(황사)의 관측)

  • Kim, Hak-Sung;Chung, Yong-Seung
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.196-209
    • /
    • 2009
  • Occurrences of sandstorms in the deserts and loess of Mongolia and northern China and associated dustfall episodes in the Korean Peninsula were monitored during the period January through December, 2005. False colour images were made by directly receiving the NOAA Advanced Very High Resolution Radiometer (AVHRR) data, and the distribution and transport of sandstorms were analyzed. The ground concentrations for PM10, PM2.5 and visibility of the dustfall episodes (PM10 concentration over $190{\mu}g\;m^{-3}$) were analyzed at Cheongwon, located midway in South Korea, and in the leeward direction of the place of origin of the sandstorms. Variations in the concentrations of $O_3,\;NO_2$, CO and $SO_2$ were also compared with dust concentrations in the dustfall episodes. Fewer occurrences of strong sandstorms in the place of origin were observed in 2005, due largely to the accumulation of snow and mild fluctuations of high and low pressure systems in the place of origin, thereby accounting for a low frequency of dustfall episodes in Korea, compared with those during the period 1997-2005. A total of 7 dustfall episodes were monitored in Korea in 2005 that lasted 11 days. In summer, sandstorms occurred less frequently in the source region in 2005 due to high humidity and milder winds, thereby causing no dustfall episodes in Korea. In case the sandstorms occurring at the place of source head directly to Korea without passing through large cities and industrial areas of China, the PM2.5 concentrations were measured at 20% or lower than the PM10 concentrations. However, when the sandstorms headed to Korea via the industrial areas of eastern China, where they pick up anthropogenic air pollutants, the PM2.5 concentrations were at least 25% higher of the PM10 concentrations. On the other hand, over 5 cases were observed and analyzed in 2005 where the PM10 concentrations of sand dust originating from the deserts were measured at $190{\mu}g\;m^{-3}$ or lower, falling short of the level of a dustfall episode.