• Title/Summary/Keyword: 지구 과학 교육

Search Result 1,227, Processing Time 0.027 seconds

Proposal Strategy and Establishment Process of a New Scientific Theory Examined through the Theory of Continental Drift (대륙이동설을 통해 살펴본 새로운 과학이론의 제안전략과 확립과정)

  • Jun-Young Oh;Eun-Ju Lee
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.17 no.1
    • /
    • pp.20-33
    • /
    • 2024
  • The purpose of this study is to examine the scientific activities of scientists justifying Wegener's continental drift in the 20th century, which is explained as a revolutionary process in earth science, and methodologically analyze the strategy of proposing new scientific theories and how the process of theory selection is carried out. Previously, the Earth was a static model and only the vertical movement of the crust was considered. However, the theory of continental drift proposed horizontal movement of the crust as a dynamic model of the Earth, eliminating numerous problems. Therefore, this study seeks to explore the rational activities of numerous scientists until the current plate tectonics theory was formed. Additionally, the theory of continental drift is in conflict with the theory of Earth shrinkage, which is an existing static model. In other words, it deviates from the existing mechanistic world view by presenting a dynamic model in which the Earth is created and changes, as opposed to a static model in which the Earth is already completed, fixed, and unchanged. As a result, old geology was weakened and new geophysics was born. The theory of continental drift and continued exploration by subsequent generations of scholars brought about a revolution in earth science. This can be said to be a good subject of investigation as educational material for various methodologies for students in earth science education, and as educational material for changing students' worldview.

Middle School Students' Understanding about Earth Systems to Implement the 2009 Revised National Science Curriculum Effectively (2009 개정 과학과 교육과정의 효과적인 실행을 위한 중학생들의 지구계에 대한 이해)

  • Lee, Hyo-Nyong
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.798-808
    • /
    • 2011
  • The purpose of this study was to explore middle school students' perceptions about earth systems in order to implement the 2009 revised national science curriculum effectively. A total of 1219 students participated in the survey and asked to determine their basic understandings about earth systems, self-reported knowledge level, and perceived significance level of the 23 earth systems concepts (contents). In relation to students' basic understandings about earth system, approximately 67% students reported that they didn't know about the term of the earth system. Atmosphere and hydrosphere were highly perceived as major component of earth system. However, cryoshere was perceived to be least familiar by the subjects. The findings also showed that students' self-reported knowledge level and significance level about major ESU#4, #5, #6 related concepts (contents) were significantly different by gender. Most of male students were more knowledgeable and perceived more significant than female students. Regarding the difference of the perceived significance level by grade, 10 out of 23 concepts were significantly different. Some implications for implementing the revised curriculum and school fields were discussed.

A Case Study of Service Education Activities Applying Mathematics into a Place-Based Earth Science Program: Measuring the Earth's Size (수학과 연계한 장소기반 지구과학 프로그램에 대한 교육봉사활동 사례 연구: 지구의 크기 측정)

  • Yu, Eun-Jeong;Kim, Kyung Hwa
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.518-537
    • /
    • 2019
  • This study examined the implications of a place-based earth science program integrated with Mathematics. 11 pre-service earth science teachers and 22 middle school students participated in the service education activities of earth science for 30 hours focusing on the measurement of the earth's size through earth science experiments as part of the middle school curriculum. In order to minimize errors that may occur during the earth's size measurement experiments using Eratosthenes's shadows length method of the ancient Greek era, the actual data were collected after triangulation ratios were conducted in the locations of two middle schools: one in remote metropolitan and the other in rural area. The two schools' students shared the final estimate result. Through this process, they learned the mathematical method to express the actual data effectively. Participants, experienced the importance and difficulty of the repetitive and accurate data acquisition process, and also discussed the causes of errors included in the final results. It implies that a Place-Based Earth Science Program activity can contribute to students' increased-understanding of the characteristics of earth science inquiry and to developing their problem solving skills, thinking ability, and communication skills as well, which are commonly emphasized in science and mathematics in the 2015 reunion curriculum. It is expected that a place-based science program can provide a foundation for developing an integrated curriculum of mathematics and science.

Case Study on the Pre-Service Earth Science Teachers' Faults Discrimination on Geological Map using Eye Tracker (시선 추적기를 활용한 지질도에서 예비 지구과학교사들의 단층 판별에 대한 사례 연구)

  • Woong Hyeon Jeon;Duk Ho Chung;Chul Min Lee
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.210-221
    • /
    • 2023
  • The purpose of this study is to evaluate the content knowledge and problem solving process used by pre-service earth science teachers while discriminating faults on geological maps. For this, we collected and evaluated data on fixation duration and gaze plot, while pre-service earth science teachers (N=12) solved the problem on faults interpretation using an eye tracker (Tobii Pro Glass 2 model). The results were as follows. First, most of the pre-service earth science teachers know the concepts of the normal and reverse fault but they do not know the procedural knowledge essential for fault interpretation on geological maps. Second, the pre-service earth science teachers did not draw a geological cross-sectional map to interpret the fault on the geological map and interpreted the fault based on two-dimensional information collected from the geological map rather than three-dimensional information. Therefore, it is essential to improve the teaching and learning environment so that pre-service earth science teachers who will become earth science teachers in the future can learn procedural knowledge essential to comprehend natural phenomena including understanding natural phenomena. The results of this study can substantially help organize a new earth science curriculum or develop materials on teachers' education in the future.

Analysis of Scientific Literacy on Korean Science Curriculum of Earth Science Contents (교육과정 변천에 따른 지구과학 영역의 과학적 소양 분석)

  • Jo, Mi-Sun;Jeong, Jin-Woo
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.3
    • /
    • pp.269-275
    • /
    • 2016
  • This study is conducted to search about changing earth science contents influenced by the scientific literacy from the 7th curriculum to the 2015 revised curriculum. Earth science area is divided into astronomy, geology, meteorology and oceanography contents. Among the elements of scientific literacy, the contents were analyzed focusing on STS elements. In the astronomical and meteorological content areas, there were aspects of scientific literacy in all periods from the 7th to the 2015 revised curriculum. Except for the 2007 revised curriculum in the geological area and the 7th curriculum in the oceanographic content area, the aspects of scientific literacy appeared at all times. It is emphasized the usefulness of science and technology in the astronomical content area and the use of science in everyday life in geological and meteorological content area. In the oceanographic content area, it is emphasized that content of science related social issue such as resource shortage and environmental pollution. This study can be extended to the fields of physics, chemistry and life science, we suggest to inquire the scientific literacy as a integrated science.

A Study on the Change of the Perception of Students' Computational Thinking and Scientific Attitudes in Earth Science Classes Using a Block-based Coding (블록형 코딩프로그램을 활용한 지구과학 수업에서 학생들의 컴퓨팅 사고력에 대한 인식 및 과학적 태도 변화 연구)

  • Han, Shin;Kim, Hyoungbum
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.2
    • /
    • pp.131-140
    • /
    • 2019
  • In this study, a block-base coding that could develop computing thinking was applied to Earth science teaching and learning to identify how the perception of computational thinking and scientific attitude was changed as part of creativity education. Based on the results of the study, the conclusions are as follows: First, an Earth science education program was developed using a block-based coding for elementary school students. The 12-hour program was designed for inquiry activities to encourage students to engage in various thinking by providing them with activity-oriented problems. Second, the Earth science education program using a block-based coding showed significant results in confidence in the use of a computer program, integrated learning with a computer, computational thinking, and problem-solving factors with computational thinking. Third, the Earth science education program using block-based coding showed significant differences in the categories of curiosity, criticism, cooperation, persistence, and creativity. It could be judged that it was effective for students in the process of questioning and trying to solve the problem themselves.