• Title/Summary/Keyword: 지구조운동

Search Result 125, Processing Time 0.038 seconds

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.

A Theoretical Study on the Landscape Development by Different Erosion Resistance Using a 2d Numerical Landscape Evolution Model (침식저항도 차이에 따른 지형발달 및 지형인자에 대한 연구 - 2차원 수치지형발달모형을 이용하여 -)

  • Kim, Dong-Eun
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.541-550
    • /
    • 2022
  • A pre-existing landform is created by weathering and erosion along the bedrock fault and the weak zone. A neotectonic landform is formed by neotectonic movements such as earthquakes, volcanoes, and Quaternary faults. It is difficult to clearly distinguish the landform in the actual field because the influence of the tectonic activity in the Korean Peninsula is relatively small, and the magnitude of surface processes (e.g., erosion and weathering) is intense. Thus, to better understand the impact of tectonic activity and distinguish between pre-existing landforms and neotectonic landforms, it is necessary to understand the development process of pre-existing landforms depending on the bedrock characteristics. This study used a two-dimensional numerical landscape evolution model (LEM) to study the spatio-temporal development of landscape according to the different erodibility under the same factors of climate and the uplift rate. We used hill-slope indices (i.e., relief, mean elevation, and slope) and channels (i.e., longitudinal profile, normalized channel steepness index, and stream order) to distinguish the difference according to different bedrocks. As a result of the analysis, the terrain with high erosion potential shows low mean elevation, gentle slope, low stream order, and channel steepness index. However, the value of the landscape with low erosion potential differs from that with high erodibility. In addition, a knickpoint came out at the boundary of the bedrock. When researching the actual topography, the location around the border of difference in bedrock has only been considered a pre-existing factor. This study suggested that differences in bedrock and various topographic indices should be comprehensively considered to classify pre-existing and active tectonic topography.

Cenozoic Geological Structures and Tectonic Evolution of the Southern Ulleung Basin, East Sea(Sea of Japan) (동해 울릉분지 남부해역의 신생대 지질구조 및 지구조 진화)

  • Choi Dong-Lim;Oh Jae-Kyung;Mikio SATOH
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.59-70
    • /
    • 1994
  • The Cenozoic geological structures and the tectonic evolution of the southern Ulleung Basin were studied with seismic profiles and exploration well data. Basement structure of the Korea Strait is distinctly characterized by normal faults trending northeast to southwest. The normal faults of the basement are most likely related to the initial liking and extensional tectonics of Ulleung Basin. Tsushima fault along the west coast of Tsushima islands runs northeastward to the central Ulleung Basin. The Middle Miocene and older sequences in the Tsushima Strait show folds and faults mostly trending northeast to southwest. These folds and faults may be interpreted as a result of compressional tectonics. The Late Miocene to Qauternary sequences are not much deformed, but numerous faults mostly N-S trending are dominated in the Tsushima Strait. The Ulleung Basin was in intial rifting during Oligocene, and then active extension and subsidence from Early to early Middle Miocene. Therefore SW Japan separated from Korea Peninsula and drifted toward southeast, and Ulleung Basin was formed as a pull-apart basin under dextral transtensional tectonic regime. During rifting and extensional stage, Tsushima fault as a main tectonic line separating SW Japan block from the Korean Peninsula acted as a normal faulting with right-lateral strike-slip motion as SW Japan drifted southeastward. During middle Middle Miocene to early Late Miocene, the opening of Ulleung basin stopped and uplifted due to compressional tectonics. The southwest Japan block converging on the Korean Peninsula caused compressional stress to the southern margin of Ulleung Basin, resulting in strong deformation under sinistral transpressional tectonic regime. Tsushima fault acted as thrust fault with left-lateral strike-slip motion. From middle Late Miocene to Quaternary, the southern margin of Ulleung Basin has been controlled by compressional motion. Thus the Tsushima fault still appears to be an active thrust fault by compressional tectonic regime.

  • PDF

Movement History of the Yangsan Fault based on Paleostress Analysis (고응력 분석을 통한 양산단층의 구조운동사)

  • 장천중;장태우
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.35-49
    • /
    • 1998
  • To interpret the movement historv of the Yangsan fault, the paleostresses were analyzed from about 1,000 striated small faults and 330 extension joints which were measured from 37 sites near and along the strike of the Yangsan fault from Yangsan-si, Kyeongsangnam-do to the Shinkwang-myeon, Kyeongsangbuk-do. Six sequential tectonic events have boen established as followings: (I) NW-SE extension, (Il) ENE-WSW compression and NNW-SSE extension, (III) NW-SE compression, (W) ENE-WSW extension, (V) E-W comoression and N-S extension, and (VI) NNE-SSW compression and(VI) NNE-SSWextension. The movement history of the Yangsan fault rnrning in NNE direction were inteepreted based on these six sequential stress fields. The initial feature of the Yangsan fault was formed at the first stage with the development of extension fractures by tectonic event (I) of NW-SE extension. The fault was acted continuously with a right-1ateral strike-slip movement by tectonic event( II) closely related to event( I). The movements had been continued until the Late Miocene. This age was the most active period in faulting. The left-lateral strike-slip movement was followed by subsequent tectonic events (ffi) and (IV). The activity of the Yangsan fault was suspended temporarily by compression of tectonic event (V) which was perpendicular to the strike of the fault. This period might be very short and the magnitude of the tectonic was also small. In the last stage, the fault acted with slight extension or right-lateral moveenent by tectonic event (VI).

  • PDF

Late Neogene and Quaternary Vertical Motions in the Otway Coast, Southeast Australia (I): Development and Geochronology of Quaternary Marine Terraces (호주 남동부 Otway 해안의 후기 신제3기 및 제4기 융기 운동(I): 제4기 해안단구 발달 및 지층서)

  • Shin, Jaeryul
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.519-533
    • /
    • 2012
  • This study investigates a neotectonic context of the past 5 Ma for the Otway Ranges along the southern Victoria coast, SE Australia by evaluating the distribution and development of marine terraces along the mountainous coastal area. Uplift rate derived from low terrace deposits using OSL dating method is determined to evaluate the extent to which mild intraplate tectonism has the capability to influence the geomorphic evolution of continental interiors. This study also investigates the stratigraphic relationship between Quaternary marine terraces and Pliocene strandlines, which suggests a change of tectonic activity in the Late Neogene. The intensified tectonic response is well addressed in terms of an increase of the Australian intraplate stress level due to the change of relative motion and increased forces in the boundary between the Australian and Pacific plate.

Neotectonics and late Quaternary Marine Terraces along the Coastal Zone of the Northern Chile. (칠레 북부해안에 발달된 제4기 해안단구(고해수면)와 신구조운동)

  • 한상준
    • The Korean Journal of Quaternary Research
    • /
    • v.9 no.1
    • /
    • pp.61-86
    • /
    • 1995
  • 칠레 북부해안에는 여러개의 해안 단구들이 발견되는데 이는 지구조 운동과 하께 해수면 변동과 밀접한 관련이 있다, 단구의 형성시기는 전부 밝혀지지는 않았으며 여전히 논란이 되고 있다,. 안토파가스타에서 이끼케까지 9개지역에서 발견되는 여러단구에 대한 탄 소 연대측정 전자스핀 공명법, 우라늄측정, 아미노산 연대측정 방법들을 이용하여 그 형성시 기를 측정하였다, 그결과들은 기본적으로 3∼4개의 뚜렷한 단구를 선정하여 지역간에 서로 대비하였다, 대부분의 단구들은 산소 동위연소 연대(Oxygen Isotope State) 3에서 11범주에 들어가는데 이것은 계단식 단구들이 단지 지구조 운동만으로 형성된 것이 아니라 전지구 기 후 변동과 밀접하게 관련된 전세계 해수면 변동에 의해 강한 영향을 받았음을 시사한다. 특 히 플라이스토세에 형성된 일련의 해빈 사구들은 플라이스토세 초기에서 중기사이 반복된 간빙기를 나타낸다.

  • PDF

Evolution of the Yangsan Fault Using the Structural Elements (구조요소를 이용한 양산단층의 진화 해석)

  • 장천중;장태우
    • Proceedings of the KSEG Conference
    • /
    • 2002.04a
    • /
    • pp.173-182
    • /
    • 2002
  • 단층이동자료를 이용하여 지구조 사건을 분별하고 단층의 운동시기 및 한반도 주변지구조체계와 비교하여 양산단층의 진화과정을 해석하였다. 양산단층은 팔레오세 때 단층형성이 시작되었고 그 후 NW-SE 신장 사건에 의해 우수주향이동을 했다. 우수주향이동은 장구한 시간동안 진행되어 마이오세 초에 확장축이 바뀜에 따라 약간의 변화가 있지만 우수운동은 지속되었다. 마이오세 말에 양산단층은 좌수이동으로 변하여 운동하게 되며, 마이오세 말 혹은 플라이스토세 초에 와서 양산단층은 N-S 방향의 최대 수평압축응력을 받게 된다. 이후 플라이스토세를 전후해서 E-W 방향의 최대수평압축응력에 의해 양산단층은 다시 우수이동을 한다. 이와 같이 양산단층은 한번의 운동으로 발달된 단층이 아니라 서로 다른 응력체계 하에서 다중변형을 받아 현재의 모습으로 진화되었다고 판단된다.

  • PDF

Various vertical motions and mechanisms in intraplate settings (판 내부 융기 운동의 다양한 스케일과 매커니즘)

  • SHIN, Jaeryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.153-163
    • /
    • 2012
  • The Earth's surface deforms vertically in response to a variety of sources relating to lithospheric and sub-lithospheric processes, and distinguishing the continental mechanisms for vertical motions of the lithosphere remains a fundamental challenge in geosciences. A key prerequisite to the challenge is documentation of the temporal and spatial pattern of vertical motions in different tectonic settings. This study is aimed at elucidating the geodynamic factors that can contribute to vertical motions of the Earth's surface in intraplate continental settings including the Neogene uplift in the Korean peninsula based on numerous recent achievements in relevant fields. Ultimately, deciphering the interplay between the Earth's surface and the Earth's interior processes leads us to the notion of "the importance of geomorphic landscape" as a prism to view the dynamics of the Earth's inside.