• Title/Summary/Keyword: 지괴

Search Result 77, Processing Time 0.025 seconds

Geology and Fracture Distribution in the Vicinities of the Cheonseong and Jeongjok Mountains (천성산과 정족산 일원의 지질과 단열 분포)

  • Son, Moon;Kim, Jong-Sun;Hwang, Byoung-Hoon;Ryoo, Chung-Ryul;Ock, Soo-Seok;Hamm, Se-Yeong;Kim, In-Soo
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.107-127
    • /
    • 2003
  • After detailed geological mapping, structural and fracture-density data were collected and analyzed in the vicinity of Cheonseong and Jeongjok Mts., Gyeongsangnam-do. A extensive dextral strike-slip fault (Beopgi Fault) Parallel to Yangsan and Dongrae Faults, a dextral-transtensional-NW fault, and a few intermittent faults have been found in the study area. Based on strike and frequency, fracture system has been divided into three sets such as NNE-trending J1 ($NS-40^{\circ}E$), WNW-trending J2 ($N50^{\circ}-80^{\circ}W$), and ENE-trending J3 ($N60^{\circ}-90^{\circ}E$). According to analysis of fracture density, it is revealed as follows: (a) Jl is the combination of Y-, P-, and R-shear fractures due to the dextral strike-slip of the Beopgi Fault. (b) J2 is the preexisted fracture zone conducting the intrusion of granite. Two tensional fractures dipping to NNE and SSW respectively have been induced by intrusion of granite and followed crustal uplift. (c) J3 is the tensional fracture developed between Yangsan and Dongrae Faults having NNE trend and dextral strike-slip sense. This study aims to reduce environmental impact and insure stability of underground facilities and tunnels.

A Study on the Geomorphology and Activity of Jinbu Fault in Pyeongchang-gun, Gangwon Province (강원도 평창군 진부 단층의 지형 및 활동성)

  • Lee, Gwang-Ryul;Cho, Young-Dong;Kim, Dae-Sik
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.775-790
    • /
    • 2008
  • This study shows possibility of active fault, throughout analyzing distributional features of tectonic and fluvial geomorphology and mineral composition of fault fracture clay, at Jinbu fault-line system in Pyeongchang-gun, Gangwon Province. Fault-line valley was formed remarkably in the upper reaches of Odae River and upper reaches of Yeongok River according along Jinbu fault-line. Landforms show rectilineal distribution at right shore slopes of Odae River in Ganpyeong-ri, southern zone of Jinbu fault-line system, related to the tectonic processes, such as triangular facet, kernbut, kerncol and alluvial fan. Fault fracture clay zones were developed at 5 outcrops($jbf1{\sim}5$), located in kerncol. Particularly, jbf1 fault outcrop, developed at granite saprolite, has obvious fault plane and fault clay composed of illite and laumontite. The Jinbu Fault-line along jbf4-2-3-5 may be formed by regional compressive stress, and jbf1 fault may be suggested a tributary fault of the Jinbu fault-line formed before the late Pleistocene. The vertical displacement of the east and west blocks of the Jinbu Fault-line is estimated in $0.024{\sim}0.027m/ka$.

Mineral Compositions of Granitic Rocks in the Yeongkwang-Naju Area (영광-나주지역에 분포하는 화강암류의 광물성분에 대한 연구)

  • Park, Jae-Bong;Kim, Yong-Jun
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.535-549
    • /
    • 2012
  • Main aspect of this study are to clarify mineral compositions on granites in Youngkwang-Naju area. These granites are is divided into four rock facies based on the geologic ages, mineralogical composition and chemical constituents, and texture : hornblende-biotite granodiorite, biotite granite, porphyritic granite and two mica granite. These granites constitude an igneous complex formed by a series of differentiation from cogenetic magma. In compressive stress field between the Ogcheon folded belt and the Youngnam massif, the foliated and undeformed granites had formed owing to heterogeneous distribution of stress. The geochemical data of study area indicate magma of these rocks would had been generated by melting in lower and middle crust. The major minerals of granitic rocks in study area are plagioclase, biotite, muscovite and hornblende. Plagioclase range in composition from oligoclase ($An_{19.3-27.7}$) to andesine ($An_{28.4-31}$), and shows normal zoning patterns, This uniformed composition indicated slow crystallization, and it is obvious that the growth of these crystal occurred before final consolidation of the magma. The Mg content of biotite are increases with increasing of $f_{O2}$ and grade of differentiation, changing from phlogopite to siderophyllite. Its $Al^{iv}$/$Al^{total}$ ratios are propertional to bulk rock alumina content. Muscovite is primary in origin with high content of $TiO_2$, and Its composition correspond to celadonitic muscovite. Hornblende indicated calc amphibole group ($(Ca+Na)_{M4}{\geq}1.43$, $Na_{M4}<0.67$). and consolidation pressure of granitic body by geobarometer of Hammerstrume and Zen show 11.3~17.2 Km.

Geochemical Study of Dyke Swarms, SE Korea (한반도 남동부일원의 암맥군에 관한 지화학적 연구)

  • Kim, Jin-Seop;Kim, Jong-Sun;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.182-199
    • /
    • 2002
  • We attempted to show the evolution of the magma and the geochemical characteristics of dikes and dike swarms by using the petrographic and geochemical data from 287 dikes, SE Korea. The dikes can be divided into mafic, intermediate, and felsic dikes in the field. And each of them is subdivided into three groups, two groups, and two groups, respectively. The group (I) among the mafic dikes most pervasively occurs and are distributed in both sides of the Yeonil Tectonic Line (YIL), which petrographic and geochemical characteristics are the same. These facts thus, strongly support the results of the previous studies which showed that they were intruded contemporaneously and that YTL was a main tectonic line which restricted the crustal clockwise rotation during the Early Miocene. The geochemical characteristics are discriminated according to the seven groups divided petrographically. The mafic, intermediate and felsic dikes belong to basalt and basaltic andesite, andesite and facile, and rhyolite, respectively, and the magmas mostly belong to calc-alkaline series. The geochemical data indicate that there were the fractional crystallizations of olivine, clinopyroxene, and plagioclase in the mafic dikes. And the content of characteristic elements and tectonic discrimination diagrams show that the dikes were formed from the magma related to the subduction of plate and that the tectonic setting was related to orogenic volcanic arc.

Tertiary Dyke Swarms and their Tectonic Importance in the Southeastern Part of the Korean Peninsula (한반도 남동부 제3기 암맥군과 지구조적 중요성)

  • Kim, Jin-Seop;Son, Moon;Kim, Jong-Sun;Kim, In-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.169-181
    • /
    • 2002
  • Basic~intermediate dike swarms are pervasively developed in the east of the Ulsan Fault, SE Korea. Most of them intruded initially along the NS-trending extensional fractures which developed under EW extension during the East Sea opening in the Early Miocene (before about 17 Ma). The mean-strikes of the basic dikes intruding into the granites are more clockwise rotated in farther eastern side, i. e.$ N06^{\circ}$E, $Nl5^{\circ}$E, and $N37^{\circ}$E in the western side, in the just vicinities, and in the eastern side of the YBonil Tectonic Line (YTL), respectively. And the mean-strike of the basic dikes nearby shoreline is also most clockwise rotated ($N75^{\circ}$E in the Guryongpo Peninsula). The spatial variance indicates that the dikes, located only in the east of the YTL, experienced horizontal-clockwise rotation, and that the dikes in farther east from the YTL experienced more clockwise rotation. It is, thus, supported that the NNW dextral shear stress, generated by the spreading of the East Sea, was propagated toward inland from eastern continental margin of the Korean Peninsula, and that the YTL is an westernmost limit of the clockwise crustal rotations which are pervasively observed in the vicinities of the Miocene basins, SE Korea.

Geomorphological Approach in Geological Mapping of the Miocene and Post-Miocene Formations in the Albudeite Area, Spain (동남(東南) Spain Albudeite 지역(地域)의 Miocene및 Post-Miocene Formation에 대한 지질조사(地質調査)에 있어서의 지형학적(地形學的)인 접근(接近))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.6 no.3
    • /
    • pp.171-182
    • /
    • 1973
  • Gemorphological and photogeological techniqes are applied to the problem of geological mapping of a semi-arid area, Albudeite, Southeastern Spain. As a result of this, a geological and surface materials map is made which shows the upper Miocene formation, which mainly consists of marl, limestone and sandstone, is further subdivided into three members, i. e. lower, middle and upper, and the post-Miocene deposits were differentiated into seven stratigraphic units, and mapped. The relationships between geology, landforms and land comlexes previously reognized have been reviewed. The methods adopted have proved to be valuable in interpreting and mapping a compex relationship in which highly variable bedrock outcrops and shallow surface materiales produced under sub-aerial conditios.

  • PDF

Petrological, Geochemical and Geochronological Studies of Precambrian Basement in Northeast Asia Region: 2. Zircon Ages of Some Metamorphic Rocks from Gyeonggi Massif (동북아시아지역 선캠브리아 지괴에 대한 암석학, 지구화학 및 지구연대학적 연구: 2. 경기육괴 일부 변성암의 저어콘 연대)

  • ;;Cao Lin;Jin Wei;Zhang Xingzhou
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.95-105
    • /
    • 2001
  • U-Pb age determination was performed on the zircon fractions separated from the metamorphic rocks of three locations of the Gyeonggi Massif. The ages obtained from the upper and lower intersections between concordia curve and discordia lines made of the zircon fractions separated from the rocks of each locality we: $2168\pm$24 Ma and $1227\pm$40 Ma for the Yongduri Gneiss Complex, $1955\pm$22 Ma and $493\pm$32 Ma for the Euiam Group, and $3712\pm$244 Ma and $1613\pm$51 Ma for the Yongmunsan Group (2$\sigma$ errors). The upper intercept ages from the Yongduri Gneiss Complex and the Euiam Group of Gyeonggi massif are very similar to those obtained from the granitic gneisses and the porphyroblastic gneisses of Yeongnam massif respectively. Such similarities suggest that Gyeonggi and Yeongnam massifs might situate under the similar tectonic and geographic environment during ca. 2.2-1.9 Ga. The upper intercept age of Youngmunsan Formation (3.7 Ga) shows large error, because most of the zircon fractions are plotted very close to the lower intersection. It is necessary to investigate further to confirm this age. However, It may suggest the possibility of occurrence of the oldest crust of the northeast Asia similar to the one reported recently from the northeast China. The lower intercept age of the Yongmunsan Group is interpreted to indicate strong metamorphism. Such age postdates the 1.85-1.7 Ga metamorphism and igneous activities occurred in the Yeongnam massif, which might record the late Paleoproterozoic tectonic activities simultaneously occurred in both massifs.

  • PDF

Quaternary Toham Basin (제4기 토함분지)

  • Choi Sung-Ja;Hong Dukgeun;Chwae Ueechan;Kim Myungjin;Lee Seog-kyu;Murray Andrew S.
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.533-541
    • /
    • 2004
  • A steadily consolidated conglomerate formation (CCF) is developed thickly around Tabjeong-ri and Janghang-ri to the east of Tohamsan, Gyeongju City. The CCF has been regarded to a basal conglomerate, Cheonbug Conglomerate, of the Yonil Group by Tateiwa (1924). Son et al. (2000) correlated the CCF to the Songjeon Formation, which occupies the southwestern block of Tertiary Waup Basin. However, the Songjeon Formation stratigraphically does not face to the extension of the CCF. OSL (Optically Stimulated Luminescence) data on the reddish brown to bluish gray psammitic layers, which are intercalated in the CCF, yielded to 85∼92 ka. Therefore, the age of CCF constrains to the last interglacial stage (MIS 5c-5e) rather than the Early Miocene Cheonbug Conglomerate. The Late Pleistocene Tohamsan Formation (TF) is newly named to the CCF and is subdivided to megabreccias and boulders. A rectangular basin, in which the TF is accumulated, is bounded by Oedong and Yonil faults (segments of Yonil Tectonic Line) and is given a name of Toham Basin. Neotectonically, Pliocene EW-transpression gave an effect of the top-up-to-the-west reverse faulting and the accompanied normal fault movement during the last interglacial age (ca. 100 ka). The basin is graben type, in which basin fills are composed of collapsed colluvial deposits, TF.

Petrological, Geochemical and Geochronological Studies of Precambrian Basement in Notheast Asia Region: 1. Age of the Metamorphism of Jirisan Area (동북아시아지역 선캠브리아 지괴에 대한 암석학, 지구화학 및 지구연대학적 연구 : 1. 지리산 지역 변성암의 변성연대)

  • 박계현;송용선;박맹언;이승구;류호정
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.29-39
    • /
    • 2000
  • For the determination of metamorphic age of the metamorphic rocks distributed in the Ji-san area of Youngnam massif, Sm and Nd isotopic compositions were analyzed for the whole rock and garnet separates. As the result, we obtained 1799 + 11 Ma from the porphyroblastic gneiss, 1776 +30 Ma from the metapelite, 1714+35 Ma from the mafic granulite xenolith within the porphyroblastic gneiss, and 1776+30 Ma from the metapelite occurred as a xenolith within the quartzofeldspathic gneiss. There have been reports of geologic ages similar to such metamorphic ages of Jirisan area from the other portion of the Youngnam massif, which reveals that very intense metamorphism took place over the vast area of Youngnam massif during the period of 1.7-1.8 Ga ago. The granulite facies metomorphism of the Gyeonggi massif also shows the age similar to this period. Such resemblance in their metamorphic ages suggests that these massifs experienced similar tectonothermal events occurred at about the same Precambrian periods, which implies the possibility that the extension of the collision belt between the north and south China blocks does not extend through some places between the Youngnam and Gyeonggi massifs. On the other hand a quarzofeldspathic xenolith of porphyroblastic gneiss show 1928 +42 Ma which is older than above age of the metamorphism and is identical with the zircon U-Pb age of porphyroblastic gneiss indicating the formation age of the protolith of the porphyroblastic gneiss.

  • PDF

Sandstone composition and Paleoclimate of cretaceous Jinju and Iljig Formations of the Western Euiseong Area in the northern Part of Kyongsang Basin (경상분지북부 의성서부지역 백악기 진주층.일직층의 사암성분 및 고기후)

  • 박진아;이용태;김상욱;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.111-122
    • /
    • 1997
  • Provenance type and paleoclimate of the Jinju and Iljig formation were studied on the basis of compositions of sandstones from the western Euiseong area in the northern part of Kyong-sang basin. The average compositions of quartz, feldspar and lithic grain(Q:F:L) from the sandstones are 53:40:7 and 50:46:4 for Jinju and Iljig formations, respectively. The values fall into the arkosic arenite field. Petrographic detrital modes of the sandstones mainly suggest transitional continental block for the tectonic setting of the provenance. All sandstones from the Jinju and IIjig formations show chemical compositions close to average values of arkose(Pettijohn, 1975). $Na_2O$ contents is relatively high. $Fe_2O_3$(total iron) and MgO contents decrease with increasing $SiO_2$ contents since the framework grains of arkoses supposed to be derived from granitic rocks are poor in ferromagnesian minerals. The detrital framework grains still possess climatic signs even though the grains were more or less altered during deep burial. Bivariant plot of Suttner and Dutta(1986) suggests semi-arid to semi-humid paleoclimate during the deposition of the Jinju and Iljig sandstones.

  • PDF