• Title/Summary/Keyword: 증산속도

Search Result 92, Processing Time 0.028 seconds

Seasonal Variation in Photosynthetic Characteristics and Chlorophyll Content of the Loranthus tanakae, Viscum album var. coloratum and its Hosts in Korea (계절에 따른 국내 자생 꼬리겨우살이, 겨우살이 및 기주목의 광합성 특성과 엽록소 함량)

  • Lee, Sugwang;Lee, Seong Han;Woo, Su Young;Kang, Hoduck
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.50-59
    • /
    • 2015
  • We investigated seasonal variation in photosynthetic characteristics and chlorophyll content of the Loranthus tanakae, Viscum album var. coloratum and its hosts in Korea. The maximum photosynthesis and transpiration rate of L. tanakae were $9.36{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at $941{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PAR (photosynthetically active radiation) in June, $5.06{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at $1,596{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PAR in July, respectively. The maximum photosynthesis and transpiration rate of V. album var. coloratum were $6.51{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at $418{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PAR in Autumn, $3.91{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ at $1,735{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PAR in Autumn, respectively. V. album var. coloratum was able to conduct photosynthesis in November whereas its host and L. tanakae were not able to conduct photosynthesis. Especially transpiration rate of L. tanakae were always higher than its host and V. album var. coloratum. The chlorophyll a+b contents of L. tanakae was $8.23mg{\cdot}g^{-1}$ in July, V. album var. coloratum was $10.27mg{\cdot}g^{-1}$ in June, and chlorophyll a/b ratio of L. tanakae was 1.7~3.7, V. album var. coloratum was 1.1~4.5, depend on season.

Characteristics in wilting and transpiration of Panax ginseng leaves (인삼(人蔘)잎의 위조(萎凋)와 증산특성(蒸散特性))

  • Park, Hoon;Yoon, Tai-Heon;Bae, Hyo-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.2
    • /
    • pp.77-82
    • /
    • 1979
  • Wilting and transpiration charactistics of Panax ginseng leaves were investigated at two temperature levels. Water potential and water absorption characteristics of leaf segments were also observed. Soybean leaves were compared. 1. Ginseng leaves were thiner, higher in water content and lower in dehydration rate. But time required to reach permanent wilting point (pwp) was less than half of that of soybean leaves because water content at pwp was about two times higher (80% of initial water for ginseng and 50% for soybean leaves). The time was shorter under high air temperature. 2. Transpiration rate was about a quater of soybean leaves and lower at $33^{\circ}C$ than $23^{\circ}C$, indicating that ginseng leaves are less tolorant to high air temperature. 3. Ginseng leaf segment showed smaller water free space but greater water deficit and little difference in was absorption rate. 4. Water potential of leaves measured by liquid immersion method was lower than that of soybean leaves. 5. Above results strongly suggest that ginseng plants are more susceptible to water stress. Thus greater light intensity during leaf growing stage (April to June) is recommendable to increase stomate frequency resulting greater transpiration rate and high temperature tolerance during July and August. Abundant water around roots seems to be beneficial as long as oxygen is not limited in rhizosphere.

  • PDF

Studies on the Preventive Measures of Vegetable Crops to Gases -2. Effect of nitrogen dioxide gas on Chinese cabbage, radish, tomato and cucumber (채소원예작물(菜蔬園藝作物)에 대(對)한 가스피해경감방법(被害輕減方法)에 관(關)한 연구(硏究) -2. 배추, 무우, 토마토, 오이에 대(對)한 아질산(亞窒酸)가스의 영향(影響))

  • Kim, Bok Young;Cho, Jae Kyu;Kim, Maun Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.223-229
    • /
    • 1987
  • This study was carried out to find out the effects of nitrogen dioxide gas on vegetable crops. Chinese cabbage, radish, tomato and cucumber were used for this experiment, and these crops were fumigated with various concentration of nitrogen dixoide gas for 2 hours under the different condition of light and soil water at the vegetable growth stage. The results obtained were as follows. The crops damages measured by percentage of leaf destruction were more severe at the night time fumigation than at the day time, under the full sun condition than under the shading, and at the higher soil water contents than at the low soil water contents. The cucumber plant showed the highest resistance to nitrogen dioxide gas and tomato plant showed the least resistance. As the nitrogen dioxide concentration increased from $0.05mg/{\ell}$ to $0.2mg/{\ell}$, the N contents in leaves of each crops were increased, and the increment of N contents in leaves was higher by fumigation at the night than at the day time. The increment of N contents in leaves showed possive correlation with the percentage of leaf destruction significantly.

  • PDF

Photosynthetic Activity of Quercus acutissima Seedlings Grown under Artificially Acidified Soil Conditions (토양산성화 조건하에서 생육시킨 상수리나무 묘목의 광합성 활성)

  • Jin, Hyun-O;Bang, Sun-Hee;Lee, Choong-Hwa
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.843-848
    • /
    • 2010
  • The effects of soil acidification on the photosynthetic activity of Quercus acutissima seedlings were investigated. We measured the growth and photosynthetic activity of the seedlings in relation to soil acidification. The dry weights of the seedlings were reduced according to the amount of $H^+$ in the soil. The concentrations of Al in needles at the 90 meq $H^+$ were significantly higher than those at the control. The contents of chlorophyll in needles at 90 meq $H^+$ were significantly lower than those at the control. The net photosynthetic rates of the seedlings in the acidified soil were reduced by increasing the amount of $H^+$ to the soil. The carboxylation efficiencies(CE) of photosynthesis were reduced in the seedlings grown in the acidified soil. These results suggested that the soil acidification induced the inhibition of photochemical reactions and $CO_2$ fixation of photosynthesis.

Response of Rice Growth under $CO_2$ Enrichment ($CO_2$ 농도 증가에 따른 벼의 생육 반응)

  • Kim Young-Guk;Shin Jin-Chul;Choi Min-Gyu;Koo Bon-Cheul;Kim Seok-Dong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.3
    • /
    • pp.179-185
    • /
    • 2005
  • The effects of $CO_2$ enrichment on growth of rice (Oryza sativa L.) were examined. The plants were grown in growth chambers with a 12-h photoperiod and a day/night temperature of $28/21^{\circ}C$ of the seedling stage and $30/23^{\circ}C$ after the panicle initiation stage. The plants were exposed to two elevated $CO_2$ of 500, 700 ppm and ambient levels (350 ppm). At early growth stage of three varieties (IIpumbyeo, Chucheongbyeo, Hwaseongbyeo), the elevated $CO_2$ increased plant height, tiller, leaf area and dry weight. The photosynthetic rate was decreased at 24 days after treatment (DAT) compared to 11 DAT. The elevated $CO_2$ increased plant height and dry weight at panicle initiation stage (PIS) and heading stage (HS) of three varieties (IIpumbyeo, Chucheongbyeo, Hwaseongbyeo). The photosynthetic rate, stomatal conductance, evapotranspiration rate were decreased at the long days of treatment than that of short days. At entire stages, the elevated $CO_2$ increased the water use efficiency of rice plant because evapotranspiration rate was lowered at the elevated $CO_2$ than ambient levels.

Effects of different UV-8 levels on the growth, photosynthesis and pigments in cucumber(Cucumis sativus L.) (UV-B 강도 변화가 오이(Cucumis sativus L.)의 생장, 광합성 및 색소에 미치는 영향)

  • Kim, Hak-Yoon;Lee, In-Jung;Shin, Dong-Hyun;Kim, Kil-Ung
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.272-278
    • /
    • 1998
  • To investigate the effects of different UV-B levels on plant growth, cucumber plants were subjected to three levels of biologically effective ultraviolet-B(UV--$B^{BE}$ radiation [daily dose : 0.03(No UV-B), 6.40(Low UV-B) and 11.30 (High UV-B) kJ $m^{-2}$, UV--$B^{BE}$] in the growth chambers for 3 weeks during the early growth period. High and low levels of UV-B irradiation drastically decreased both dry weight and leaf area, but increased specific leaf weight of cucumber. Plants subjected to UV-B resulted in 30% and 20% reduction of photosynthesis rate by high and low UV-B, respectively. However, respiration rate was not affected by the UV-B. With increasing UV-B intensity, total chlorophyll contents were decreased linearly, while the contents of flavonoid were increased linearly. These results suggest that the present levels of UV-B may affect the growth of cucumber plant compared with a UV-B-free condition. It is likely that the growth of cucumber will be affected by enhanced UV-B due to ozone depletion in the near future.

  • PDF

The Effect of Irrigation Concentration on the Growth and Fruit Quality of Sweet Pepper(Capsicum annuum L.) in Fertigation (관비재배에서 급액농도가 착색단고추의 생육과 품질에 미치는 영향)

  • 배종향;김귀호
    • Journal of Bio-Environment Control
    • /
    • v.13 no.3
    • /
    • pp.167-171
    • /
    • 2004
  • Objective of this research was to investigate the effect of irrigation concentration on the growth and fruit quality of sweet pepper(Capsicum annuum L.) in fertigation. The sweet pepper was grown for 210 days with irrigation concentration of EC 0.5, 1.0, 1.5, 2.0, and 3.0 dSㆍ$m^{-1 }$ in fertigation nutrient solution developed by European Vegetable R & D Center, Belgium. The net $CO_2$ assimilation and transpiration rate were the highest in the treatment of 2.0 dSㆍ$m^{-1 }$. The pH in the soil was range of 5.63 ~6.03, the EC increased as the irrigation concentration was getting higher. The SPAD value also increased as the irrigation concentration was getting higher, N, P, K, Mg except Ca were highest in the treatment of EC 2.0 dSㆍ$m^{-1 }$. The growth was good in the treatment of EC 2.0 dSㆍm$m^{-1 }$. The fruit length, width, firmness, and pericarp thickness had no statistical differences among treatments, the fruit fresh weight and dry weight were good in the treatment of EC 2.0 dSㆍ$m^{-1 }$ the yield was good in the treatment of EC 1.5 dSㆍ$m^{-1 }$ and EC 2.0 dSㆍ$m^{-1 }$ The sugar contents was the highest in the treatment of EC 2.0 dSㆍ$m^{-1 }$ with 9.0$^{\circ}$Brix. In conclusion, the optimal irrigation concentration for sweet pepper fertigation was EC 2.0 dSㆍm$^{-1}$ .

Physiological Responses of Bupleurum latissimum Nakai, Endangered Plants to Changes in Light Environment (광환경조절에 따른 멸종위기식물 섬시호의 생리적 반응)

  • Lee, Kyeong-Cheol;Wang, Myeong-Hyeon;Song, Jae Mo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.154-161
    • /
    • 2013
  • This study was conducted to investigate the physiological responses of Bupleurum latissimum, endangered plants by light condition. We investigated photosynthetic parameters, chlorophyll contents and chlorophyll fluorescence under different shading treatments (Shaded 50%, 70%, 90% and non-treated). Results showed that net apparent quantum yield (AQY) and chlorophyll contents were significantly increased with elevating shading level. However, light compensation point (LCP) and dark respiration ($R_d$) were shown the opposite trend. Especially, non-treated exhibited photoinhibition such as reduction of chlorophyll contents and maximum photosynthesis rate ($Pn_{max}$) also variation trend of stomatal conductance ($g_s$), and transpiration rate (E) were decreased to prevent water loss. Photosynthetic rate ($P_{Nmax}$) and photochemical efficiency (Fv/Fm) of 90% treatment showed a drastic reduction in July. This implies that photosynthetic activity will be sharply decreased with a long period of low light intensity. The 50% treatment showed relatively higher photosynthetic activity than other treated. This result suggested that growth and physiology of B. latissimum adapted to 50% of full sunlight.

Effects of Light, Temperature, Water Changes on Physiological Responses of Kalopanax pictus Leaves(II) - Characteristics of Stomatal Transpiration, Water Efficiency, Vapor Pressure Deficit of Leaves by the Light Intensity - (광, 온도, 수분 변화에 따른 음나무 엽의 생리반응(II) - 광도변화에 따른 기공증산, 수분이용효율, 수증기압결핍 -)

  • Han, Sang-Sup;Jeon, Doo-Sik;Sim, Joo-Suk
    • Journal of Forest and Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.92-97
    • /
    • 2005
  • This research was carried out to elucidate the characteristics of stomatal transpiration, water efficiency, vapor pressure deficit of leaves by the light intensity Kalopanax pictus leaves. The results obtained are summarized as follows: 1. In the upper leaves of Kalopanax pictus seedlings, the stomatal transpiration rate increased continuously with increasing light intensity, but in the middle and lower leaves. it was saturated at $100{\mu}mol\;m^{-2}S^{-1}$. At the light saturated point. the stomatal transpiration rate was in the following order: the upper ($1.29mmol\;H_2O\;m^{-2}S^{-1}$) middle ($0.56mmol\;H_2O\;m^{-2}S^{-1}$) lower leaves ($0.31mmol\;H_2O\;m^{-2}S^{-1}$). 2. In the upper leaves, water use efficiency rapidly increased to $600{\mu}mol\;m^{-2}S^{-1}$, and then decreased. In the middle and lower leaves, it increased to $400{\mu}mmol\;m^{-2}S^{-1}$, and then showed a constant values. 3. The vapor pressure deficit (VPD) in according to leaf positions was linearly decreased with increasing photosynthetic photon flux density (PPFD).

  • PDF

Effect of ionic Salt Strength on the Growth and Photosynthetic Rate of Pepper Plug Seedlings (무기 이온의 농도가 고추 플러그묘의 생육과 광합성에 미치는 영향)

  • Ahn, Chong-Kil;Son, Beung-Gu;Kang, Jum-Soon;Lee, Yong-Jae;Park, In-Soo;Choi, Young-Whan
    • Journal of Bio-Environment Control
    • /
    • v.12 no.2
    • /
    • pp.68-71
    • /
    • 2003
  • Experiments were conducted to investigate optimal ionic salt strength in nutrient solution for small plug seedlings of ‘Nokgwang’ and ‘Kwari’ green pepper. Plant height increased with increasing ionic salt strength. total leaf area was 72% greater in ‘Nokgwang’ and 18% greater in ‘Kwari’with 2.0 ionic salt strength than that with 1.0 strength. Dry weight per plant tended to increase at higher ionic salt strengths in ‘Kwari’, but to decrease in ‘Nokgwang’ Chlorophyll content increased with increasing ionic salt strength in both cultivars. Photosynthetic rate, stomatal conductance, and transpiration rate were higher for plants fertilized with 1.5 strength than other strengths in both cultivars. Photosynthetic rate peaked at 8.74 $\mu$mol$.$m$^{-2}$ s$^{-1}$ in ‘Nokgwang’ and 5.70 $\mu$mol$.$m$^{-2}$ s$^{-1}$ in‘Kwari’with 1.5 ionic salt strength.