• Title/Summary/Keyword: 증산속도

Search Result 93, Processing Time 0.02 seconds

Studies on the Citric Acid Production by Hansenula anomala var. anomala (Hansenula anomala var. anomala에 의(依)한 구연산 생산(生産)에 관(關)한 연구(硏究))

  • Oh, Man-Jin;Park, Yoon-Joong;Lee, Suk-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.215-223
    • /
    • 1973
  • A potent citric acid producing strain was selected by an extensive screening test of the yeasts isolated from the various sources. These experiments were conducted to identify the selected strain and investigate the cultural conditions for citric acid production. The results obtained were as fellows: 1. The selected strain of yeast was identified to Hansenula anomala var. anomala by a taxnoomic study of Lodder. 2. The optimum conditions for citric acid production in the basal medium containing 10% glucose were: temperature $30^{\circ}C$, the concentration of $CaCO_3$ 3% and the velocity of oscillation 110 oscills/min. 3. As a nitrogen source ol the basal medium $NH_4Cl(0.1%)$ was the most effective for citric acid production. Organic nitrogen sources such as peptone were adequate for growth of the strain but not for citric acid production. 4. The most effective concentration of glucose was 10% in yield ratio of citric acid from sugar. 5. The addition of defatted rape seed, defatted perilla or defatted rice bran to the medium was effective for citric acid production. When 5% extract solution of defatted rape seed was added, the citric acid production was increased as much as 40% as compared with the case of adding yeast extract(0.2%). 6. The most effective concentration of $KH_2PO_4$ and $MgSO_4{\cdot}7H_2O$ in the medium(for citric acid Production) was 0.05% and 0.025% respectively. 7. Under the optimum cultural conditions, the growth of the strain was continued up to 5 days and the increase of citric acid production was continued up to 6 days, showing the yield ratio of 46% to glucose.

  • PDF

Photosynthetic and Growth Responses of Chinese Cabbage to Rising Atmospheric CO2 (대기 중 CO2 농도의 상승에 대한 배추의 광합성과 생장 반응)

  • Oh, Soonja;Son, In-Chang;Wi, Seung Hwan;Song, Eun Young;Koh, Seok Chan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.357-365
    • /
    • 2016
  • The effects of elevated atmospheric $CO_2$ on photosynthesis and growth of Chinese cabbage (Brassica campestris subsp. napus var. pekinensis) were investigated to predict productivity in highland cropping in an environment where $CO_2$ levels are increasing. Vegetative growth, based on fresh weight of the aerial part, and leaf characteristics (number, area, length, and width) of Chinese cabbage grown for 5 weeks, increased significantly under elevated $CO_2$ ($800{\mu}mol{\cdot}mol^{-1}$) compared to ambient $CO_2$ ($400{\mu}mol{\cdot}mol^{-1}$). The photosynthetic rate (A), stomatal conductance ($g_s$), and water use efficiency (WUE) increased, although the transpiration rate (E) decreased, under elevated atmospheric $CO_2$. The photosynthetic light-response parameters, the maximum photosynthetic rate ($A_{max}$) and apparent quantum yield (${\varphi}$), were higher at elevated $CO_2$ than at ambient $CO_2$, while the light compensation point ($Q_{comp}$) was lower at elevated $CO_2$. In particular, the maximum photosynthetic rate ($A_{max}$) was higher at elevated $CO_2$ by 2.2-fold than at ambient $CO_2$. However, the photosynthetic $CO_2$-response parameters such as light respiration rate ($R_p$), maximum Rubisco carboxylation efficiency ($V_{cmax}$), and $CO_2$ compensation point (CCP) were less responsive to elevated $CO_2$ relative to the light-response parameters. The photochemical efficiency parameters ($F_v/F_m$, $F_v/F_o$) of PSII were not significantly affected by elevated $CO_2$, suggesting that elevated atmospheric $CO_2$ will not reduce the photosynthetic efficiency of Chinese cabbage in highland cropping. The optimal temperature for photosynthesis shifted significantly by about $2^{\circ}C$ under elevated $CO_2$. Above the optimal temperature, the photosynthetic rate (A) decreased and the dark respiration rate ($R_d$) increased as the temperature increased. These findings indicate that future increases in $CO_2$ will favor the growth of Chinese cabbage on highland cropping, and its productivity will increase due to the increase in photosynthetic affinity for light rather than $CO_2$.

History and Future Direction for the Development of Rice Growth Models in Korea (벼 작물생육모형 국내 도입 활용과 앞으로의 연구 방향)

  • Kim, Junhwan;Sang, Wangyu;Shin, Pyeong;Baek, Jaekyeong;Cho, Chongil;Seo, Myungchul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.167-174
    • /
    • 2019
  • A process-oriented crop growth model can simulate the biophysical process of rice under diverse environmental and management conditions, which would make it more versatile than an empirical crop model. In the present study, we examined chronology and background of the development of the rice growth models in Korea, which would provide insights on the needs for improvement of the models. The rice crop growth models were introduced in Korea in the late 80s. Until 2000s, these crop models have been used to simulate the yield in a specific area in Korea. Since then, improvement of crop growth models has been made to take into account biological characteristics of rice growth and development in more detail. Still, the use of the crop growth models has been limited to the assessment of climate change impact on crop production. Efforts have been made to apply the crop growth model, e.g., the CERES-Rice model, to develop decision support system for crop management at a farm level. However, the decision support system based on a crop growth model was attractive to a small number of stakeholders most likely due to scarcity of on-site weather data and reliable parameter sets for cultivars grown in Korea. The wide use of the crop growth models would be facilitated by approaches to extend spatial availability of reliable weather data, which could be either measured on-site or estimates using spatial interpolation. New approaches for calibration of cultivar parameters for new cultivars would also help lower hurdles to crop growth models.