• Title/Summary/Keyword: 증발강도

Search Result 125, Processing Time 0.021 seconds

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

Assessment of Carsington Dam Failure by Slope Stability and Dam Behavior Analyses (사면안정 해석과 댐 거동분석을 통한 Carsington Dam 파괴의 고찰)

  • 송정락;김성인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.87-102
    • /
    • 1991
  • It has been reported that the failure of Carsington Dam in Eng1and occured due to the existence of a thin yellow clay layer which was not identified during the design work, and due to pre-existing shears of the clay layer. The slope stability analyses during the design work, which utilized traditional circular arc type failure method and neglected the existence of the clay layer, showed a safety factor of 1.4. However, the post-failure analyses which utilized translational failure mode considering the clay layer and the pre-existing shear deformation revealed the reduction of safety factor to unity. The post-failure analysis assumed 10。 inclination of the horizontal forces onto each slice based on the results of finite element analyses. In this paper, Bishop's simplified method, Janbu method, and Morgenstern-Price method were used for the comparison of both circular and translational failure analysis methods. The effects of the pre-existing shears and subsquent movement were also considered by varying the soil strength parameters and the pore pressure ratio according to the given soi1 parameters. The results showed factor of safefy 1.387 by Bishop's simplified method(STABL) which assumed circular arc failure surface and disregarding yellow clay layer and pre-failure material properties. Also the results showed factor of safety 1.093 by Janbu method(STABL) and 0.969 by Morgenstern-Price method(MALE) which assumed wedge failure surface and considerd yellow clay layer using post failure material properties. In addition, dam behavior was simulated by Cam-Clay model FEM program. The effects of pore pressure changes with loading and consolidation, and strength reduction near or at failure were also considered based on properly assumed stress-strain relationship and pore pressure characteristics. The results showed that the failure was initiated at the yellow clay layer and propagated through other zones by showing that stress and displacement were concentrated at the yel1ow clay layer.

  • PDF

Independent Verification Program for High-Dose-Rate Brachytherapy Treatment Plans (고선량률 근접치료계획의 정도보증 프로그램)

  • Han Youngyih;Chu Sung Sil;Huh Seung Jae;Suh Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.21 no.3
    • /
    • pp.238-244
    • /
    • 2003
  • Purpose: The Planning of High-Dose-Rate (HDR) brachytherapy treatments are becoming individualized and more dependent on the treatment planning system. Therefore, computer software has been developed to perform independent point dose calculations with the integration of an isodose distribution curve display into the patient anatomy images. Meterials and Methods: As primary input data, the program takes patients'planning data including the source dwell positions, dwell times and the doses at reference points, computed by an HDR treatment planning system (TPS). Dosimetric calculations were peformed in a $10\times12\times10\;Cm^3$ grid space using the Interstitial Collaborative Working Group (ICWG) formalism and an anisotropy table for the HDR Iridium-192 source. The computed doses at the reference points were automatically compared with the relevant results of the TPS. The MR and simulation film images were then imported and the isodose distributions on the axial, sagittal and coronal planes intersecting the point selected by a user were superimposed on the imported images and then displayed. The accuracy of the software was tested in three benchmark plans peformed by Gamma-Med 12i TPS (MDS Nordion, Germany). Nine patients'plans generated by Plato (Nucletron Corporation, The Netherlands) were verified by the developed software. Results: The absolute doses computed by the developed software agreed with the commercial TPS results within an accuracy of $2.8\%$ in the benchmark plans. The isodose distribution plots showed excellent agreements with the exception of the tip legion of the source's longitudinal axis where a slight deviation was observed. In clinical plans, the secondary dose calculations had, on average, about a $3.4\%$ deviation from the TPS plans. Conclusion: The accurate validation of complicate treatment plans is possible with the developed software and the qualify of the HDR treatment plan can be improved with the isodose display integrated into the patient anatomy information.

Physicochemical Changes of Food Waste Slurry Co-fermented with Pig Manure Slurry (음식물쓰레기와 돈분 액상물의 혼합부숙시 이화학적 특성 변화)

  • So, Kyu-Ho;Seong, Ki-Seog;Hong, Seung-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.242-248
    • /
    • 2007
  • To find a feasibility of utilization of food waste slurry (FWS) generated during composting, FWS was combined with pig manure slurry (PMS) in various ratios and the change of nutrient contents and offensive odor of the combined slurries before and after fermentation were studied. The initial pH was 7.67 for PMS and 8.45 for FWS. However, during the fermentation, pH increased in the combined slurries with the higher FWS rate among the treatments while decreased in thosewith higher PMS rate. EC of each slurry sample showed that the difference among combined slurry samples has been reduced during fermentation and became stabilized in $21{\sim}23dS\;m^{-1}$ after 180 days. After 180 days fermentation, total nitrogen (T-N) decreased. T-N of mixture with a half and more FWS decreased up to 0.1%, less than the critical level (0.3%). The contents of O.M., T-N, phosphorus, calcium and magnesium decreased with fermentation while those of potash and salinity increased. From initial fermentation until 30 days, a lot of $NH_3$, as an offensive odor, was produced. However, it decreased steadily, except in higher PMS rate. In terms of producing $50{\mu}g\;ml^{-1}$ of $NH_3$, the top layer took 30 days after fertilization with FWS only, 45 days for utilized treatment with F75 (25 % of PMS), 75 days for utilized with F50 (50%) and F25 (75%) and 90 days for PMS only, respectively. $RNH_2$ also had similar trend with $NH_3$ but it was produced continuously as long fermentation proceeded. In terms of $RNH_2$, the decrease in concentration up to $50{\mu}g\;ml^{-1}$ were; 45 days for FWS only(F100), 105 days for F75 utilization, 120 daysfor F50, 165 days for F25, respectively. ethyl mercaptan was produced in PMS until 180 days after fertilization but it was not produced in FWS. Sensory tests as an integrated test of offensive odor were also done. FWS showed lower than 1 after 30 days from initial fermentation, while PMS had still offensive odor even up to 180 days from initial fermentation. It is probably affected by the continuous production of ethyl mercaptan and amines. However, considering in decrease T-N content caused by volatilization while offensive odor intensity according to official standard of fertilizer is lower than 2. Further study on controlling offensive odor needs to be done.

Influence of Curing Conditions on Volumetric Changes in Concrete (양생 조건이 콘크리트의 체적 변화에 미치는 영향)

  • Lee, Kwang-Myong;SunWoo, Joo-Yeun;Lee, Hoi-Keun;Khayat, Kamal H.
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.331-338
    • /
    • 2006
  • This paper presents the experimental results on volumetric changes in ordinary portland cement concrete made with various water-to-cement ratios(W/C's) ranging from 0.32 to 0.50 and cured in low different conditions. Curing regimes employed in this work were designed to exhibit autogenous and drying shrinkage as well as swelling of concrete. The concrete avoided any moist evaporation(Regime f showed only autogenous shrinkage and the lower the W/C, the feater the autogenous shrinkage. The concrete exposed to air drying conditions at $20{\pm}1^{\circ}C$ and $60{\pm}3%$ RH after 6-day water curing at $20{\pm}1^{\circ}C$(Regime II) swelled and then started to shrink. The maximum swelling value of concrete developed in water curing was between 15 and $40{\pm}10^{-6}$, and the greatest total shrinkage(autogenous+drying shrinkage) was obtained for the mixture made with W/C of 0.32. The concrete let to air drying conditions(Regime III) showed greater total shrinkage compared to the concrete cured in Regime II. The concrete exposed to air drying condition after 6-day sealed curing(Regime IV) exhibited slightly smaller total shrinkage than that of the concrete cured in Regime III. Net drying shrinkage that can be derived from the results of Regime I, III, and IV increased as the W/C increased despite of similar total shrinkage. This result indicated that drying shrinkage governs total shrinkage of high-W/C concretes. In other words, a portion of autogenous shrinkage in total shrinkage increased in low-W/C concretes. Therefore, it should be controlled in terms of cracking potential. Finally, total shrinkage of high-strength and high-performance concrete made with low W/C can be effectively reduced by appropriate early moisture curing.