• Title/Summary/Keyword: 즉시침하

Search Result 16, Processing Time 0.021 seconds

The Study on the Behavior of Closed-Faced Shield Tunneling by Two Dimensional Elasto-Plastic Analysis (2차원 탄소성해석에 의한 밀폐형 실드터널의 거동에 관한 연구)

  • 진치섭;이홍주;한상중
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.199-207
    • /
    • 1996
  • In the past decade soft clay shield tunneling technology have been improved to permit continuous support to the face of a tunnel. These advanced shield can be operated such that an initial heaving is created, this helps to decrease the inward soil movement into the tail void. In this paper, the measurement of slurry shield and EPB shield were used and two dimensional elasto-plastic programs EPSHILD developed for shield tunnel analysis were approved. The excavation steps corresponding with construction stages were settled and heaving load, load factors were considered. This study is based on the instantaneous settlement which is occured in the process of shield construction but not the secondary settlement by consolidation.

  • PDF

Settlement Characteristics of a Large-Scale Foundation over a Sabkha Layer Consisting of Carbonate Sand (Sabkha층 탄산질 모래의 침하특성 및 상부기초의 거동)

  • Kim, Seok-Ju;Han, Heui-Soo
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.247-256
    • /
    • 2013
  • The carbonate sands of the Sabkha layer in the Middle East have very low shear strength. Therefore, instant settlement and time-dependent secondary settlement occur when inner voids are exposed, as in the case of particle crushing. We analyzed settlement of the Sabkha layer under a large-scale foundation by hydrotesting, and compared the field test results with the results of laboratory tests. With ongoing particle crushing, we observed the following stress-strain behaviors: strain-hardening (Sabkha GL-1.5 m), strain-perfect (Sabkha GL-7.0 m), and strain-softening (Sabkha GL-7.5 m). General shear failure occurred most frequently in dense sand and firm ground. Although the stress-strain behavior of Sabkha layer carbonate sand that of strain-softening, the particle crushing strength was low compared with the strain-hardening and strain-perfect behaviors. The stress-strain behaviors differ between carbonate sand and quartz sand. If the relative density of quartz sand is increased, the shear strength is also increased. Continuous secondary compression settlement occurred during the hydrotests, after the dissipation of porewater pressure. Particle crushing strength is relatively low in the Sabkha layer and its stress-strain behavior is strain-softening or strain-perfect. The particle crushing effect is dominant factor affecting foundation settlement in the Sabkha layer.

Dynamic measurements during Dynamic Compaction (동다짐시 동적 거동 계측)

  • 나영묵
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1997.10a
    • /
    • pp.81-88
    • /
    • 1997
  • 현재 국내외에서 해안가에 수심이 낮은 지역을 중심으로 대규모 매립공사를 수행하여 주택단지, 항만시설, 공업단지 및 공항부지 등으로 사용하고 있다. 매립재를 양질의 모래로 사용하는 경우 매립방법에 따라 매립토의 조밀정도는 다르나 어떠한 경우든 상당히 느슨하거나 중간정도 느슨한 상태로 존재한다. 이런한 느슨한 사질토는 지진 시 액상화 현상에 민감하고, 낮은 지지력 및 큰 즉시침하를 야기시킨다. 따라서 매립된 느슨한 사질토는 향후 시설될 구조물의 중요도에 따라 개량할 필요가 있다. 본 현장의 준설 매립된 사질토의 지반 개량에 적용된 동다짐의 시험시공중 pounder에 accelerometer를 설치하고 적외선 beam을 이용, 충격시의 pounder의 deccleration과 impact velocity를 측정하였다. 여기에서는 이들 실측치를 근거로 중량물체(pounder)의 동적 거동 및 충격시 과잉간극수압 변화를 살펴보았다.

  • PDF

A Study on the Consolidation Settlement Due to the Vertical Drain Method by the Implicit Finite Difference Scheme (음적차분해석법을 이용한 연직배수 공법에 의한 압밀침하에 관한 연구)

  • Park, Sung Zae;Jung, Du Hwoe;Jeong, Gyeong Hwan;Lee, Kyeong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1243-1251
    • /
    • 1994
  • The implicit finite difference program was developed to evaluate the relationship between time and consolidation ratio within the zone of vertical drain effective radius. In the evaluation, the excess pore water pressure was considered to dissipate in two directions, namely, vertical and radial flow direction. To calculate subsoil stress increments in the soil due to multi-step embanking, the foundation soil was assumed to be an isotropic and homogeneous elastic medium and the initial excess pore water pressure was estimated by using Skempton's parameters whose condition is plane strain and elastic phase of pore pressure response within the soft ground. Regarding to the settlement estimation, immediate and primary consolidation settlements were calculated. The secondary or delayed consolidation settlement was not considered. Numerically calculated excess pore water pressure and settlements were similar to the measured data in situ. Thus, this method can be used to predict the time-consolidation ratio of each layer treated by vertical drain method.

  • PDF

Prediction Method of Settlement Based on Field Monitoring Data for Soft Ground Under Preloading Improvement with Ramp Loading (점증 선행 하중으로 개량하는 연약지반의 계측기반 침하량 예측방법 개발)

  • Woo, Sang-Inn;Yune, Chan-Young;Baek, Seung-Kyung;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.83-91
    • /
    • 2008
  • Previous settlement prediction methods based on settlement monitoring were developed under instantaneous loading condition and have restriction to be applied to soft ground under ramp loading condition. In this study, settlement prediction method under ramp loading was developed. New settlement prediction method under ramp loading considered influence factors of consolidation settlement such as thickness of clayed layer, quantity of surcharge load and preconsolidation pressure, etc. Geometrical correction method based on hyperbolic method (1991) and correction method based on probability theory were applied to increase accuracy of settlement prediction using field monitoring data after ramp loading. Large consolidation tests for ideally controlled one dimensional consolidation under ramp loading condition were performed and the settlement behavior was predicted based on the monitoring data. New prediction method yielded good result of entire settlement behavior by using data during an early stage of ramp load. Additionally, new prediction method offered better settlement prediction which had final settlement prediction in close proximity and low RMSE(Root Mean Square Error) than previous method such as hyperbolic method did.

Calculation of Immediate Settlement Caused by Shear Deformation for Embankment on Soft Ground (연약지반 성토시 전단변형에 의하여 유발된 즉시침하량의 산정)

  • 정하익;진현식;진규남;김달용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.02a
    • /
    • pp.78-83
    • /
    • 1999
  • The ultimate settlement of soft clay consists of three parts: $\circled1$ immediate settlement, S$\sub$d/; $\circled2$ Primary consolidation settlement, S$\sub$c/; $\circled3$ Secondary consolidation settlement, S$\sub$s/. In general, S$\sub$c/ can be accurately calculated by one-dimensional consolidation and S$\sub$s/ or S$\sub$d/ may be ignored. This paper focuses on a calculation method to estimate the immediate settlement induced by lateral deformation of subgrade, to which shear stress is applied by embankment on soft ground. Immediate settlement and consolidation settlement are discussed by comparing the field measurement of the Yangsan test embankment on treated soft foundation by vertical paper drains.

  • PDF