• Title/Summary/Keyword: 중.저준위 방사성폐기물

Search Result 164, Processing Time 0.027 seconds

음이온교환수지를 이용한 백금족 금속의 분리 및 정제 연구(I) - 상용 강염기성 음이온 교환수지의 흡착연구 -

  • 김유선;이성호;안도희;김광락;백승우;강희석;이한수;정흥석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.345-349
    • /
    • 1997
  • 고준위 방사성 액체폐기물에서 얻어지는 백금족 금속(Pd, Rh, Ru) 들의 분리 및 정제방법으로 강염기성 음이온교환수지를 사용하여본 결과 상용 수지중에서 Dowex 1 $\times$ 8 이 IRN-78 에 비하여 저 농도의 질산 농도에서 Pd(II) 의 분리 및 정제시 우수한 흡착성을 보여 주었으며 Rh(III) 의 흡착은 Pd(II) 의 것보다 훨씬 낮은 값을 보여 주었다. 이 수지들의 백금족 금속에 대한 흡착성을 문헌에 보고된 실험 결과들과 비교 검토하여 본 바 이온 그룹으로 3급 및 4급 Benzimidazole을 가지는 수지에 비하여 훨씬 낮은 값을 나타내었다. 따라서 실용성이 큰 강염기성 음이온수지로서는 Benzimidazole과 같은 혼합 아민 그룹을 지닌 수지가 가장 접합할 것으로 전망되었다.

  • PDF

A Study on Establishment of Buffer Zone of Radioactive Waste Repository (방사성패기물 처분시설에서의 완충공간 설정에 대한 고찰)

  • Yoon, Jeong-Hyoun;Park, Joo-Wan;Ju, Min-Su;Kim, Chang-Lak;Park, Jin-Baek
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.45-54
    • /
    • 2008
  • A new proposed repository has a final capacity of 800,000 drums radioactive waste. Most of foreign repositories have a general practice of segregating control zones which mainly contributes to classification of degree of control, whether it is called buffer zone or not. Domestic regulatory requirements of establishment of buffer zone in a repository are not much different from those of nuclear power plants for operation period, in which satisfactory design objective or performance objective is the most important factor in determination of the buffer zone. The meaning of buffer zone after closure is a minimum requested area which can prevent inadvertant intruders from leading to non-allowable exposure during institutional control period. Safety assessment with drinking well scenario giving rise to the highest probability of exposure among the intruder's actions can verify fulfillment of the buffer zone which is determined by operational safety of the repository. At present. for the repository to be constructed in a few years, the same procedure and concept as described in this paper are applied that can satisfy regulatory requirements and radiological safety as well. However, the capacity of the repository will be stepwise extended upto 800,000 drums, consequently its layout will be varied too. Timely considerations will be necessary for current boundary of the buffer zone which has been established on the basis of 100,000 drums disposal.

  • PDF

A Basical Study on the Preparing of Container Used for Treatment and Disposal of Low-and Intermediate-Level Radioactive Wastes(I) (저.중준위 방사성 폐기물의 고화처리 및 처분용 용기 개발을 위한 기초연구(1))

  • 홍원표;정수영;황의환;조헌영;김철규
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.101-110
    • /
    • 1988
  • In order to improve the physical properties of concrete used for treatment and disposal container of low-and intermediate-level radioactive wastes, OPC (ordinary portland cement), ACPC (asphalt coated portland cement) and EPC(epoxy-portland cement) concrete specimens were prepared, and the physical properties of each concrete specimen were tested. According to the experimental results, EPC concrete showed better physical properties than ACPC and OPC concrete, however, ACPC concrete proved to be a best material for treatment and disposal container of radwastes in view of economic aspect and physical properties.

  • PDF

Characterization of Cement Solidification for Enhancement of Cesium Leaching Resistance (세슘 침출 저항성 증진 시멘트 고화체의 제조 및 특성 평가)

  • Kim, Gi Yong;Jang, Won-Hyuk;Jang, Sung-Chan;Im, Junhyuck;Hong, Dae Seok;Seo, Chel Gyo;Shon, Jong Sik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.183-193
    • /
    • 2018
  • Currently, the Korea Atomic Energy Research Institute (KAERI) is planning to build the Ki-Jang Research Reactor (KJRR) in Ki-Jang, Busan. It is important to safely dispose of low-level radioactive waste from the operation of the reactor. The most efficient way to treat radioactive waste is cement solidification. For a radioactive waste disposal facility, cement solidification is performed based on specific waste acceptance criteria such as compressive strength, free-standing water, immersion and leaching tests. Above all, the leaching test is important to final disposal. The leakage of radioactive waste such as $^{137}Cs$ causes not only regional problems but also serious global ones. The cement solidification method is simple, and cheaper than other solidification methods, but has a lower leaching resistance. Thus, this study was focused on the development of cement solidification for an enhancement of cesium leaching resistance. We used Zeolite and Loess to improve the cesium leaching resistance of KJRR cement solidification containing simulated KJRR liquid waste. Based on an SEM-EDS spectrum analysis, we confirmed that Zeolite and Loess successfully isolated KJRR cement solidification. A leaching test was carried out according to the ANS 16.1 test method. The ANS 16.1 test is performed to analyze cesium ion concentration in leachate of KJRR cement for 90 days. Thus, a leaching test was carried out using simulated KJRR liquid waste containing $3000mg{\cdot}L^{-1}$ of cesium for 90 days. KJRR cement solidification with Zeolite and Loess led to cesium leaching resistance values that were 27.90% and 21.08% higher than the control values. In addition, in several tests such as free-standing water, compressive strength, immersion, and leaching tests, all KJRR cement solidification met the waste acceptance or satisfied the waste acceptance criteria for final disposal.

A Study on the Introduction of the ETV for Disaster Prevention - Focusing on the Role of the Korea Coast Guard for the Prevention of Radioactive Waste Accidents and Marine Accidents - (재난 예방을 위한 ETV 도입에 관한 연구 - 방사성폐기물 사고 및 해양사고 예방을 위한 해양경찰의 역할을 중심으로 -)

  • Jin, Ho-hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.694-700
    • /
    • 2018
  • Korea has disposed of medium and low level radioactive waste generated by operating nuclear power plants permanently through the radioactive waste repository located in Gyeongju. However, the maritime transport of radioactive waste is exposed to the risk of marine accidents, and it will be necessary to introduce a system to secure safety from the viewpoint of the function and role of the Korea Coast Guard. Especially, Korea is affected by large-scale marine accidents, such as the Hebei Spirit or Sewol accidents. From this point of view, we analyzed the current status of Korea radioactive waste shipping and examined the response systems of major foreign countries. As a result of examining major cases of accidents, we have operated an Emergency Towing Vessel (ETV) fleet centering on European countries in order to respond urgently to marine casualties that may have social, regional and international effects, such as accidents of similar nuclear material carriers and dangerous cargo ships. It proves a partial effect. Based on this, we propose the introduction of the Korean ETV System. In other words, it is necessary to respond to large-scale marine accidents that could lead to enormous environmental, property, and personal damage, such as marine accidents involving nuclear material ships, large oil tankers, and large passenger ships. For this, it seems necessary to introduce Korea ETV, which can carry out emergency towing, oil pollution control function, large - scale rescue equipment and manpower. This will lead to the enhancement of the Korea Coast Guard response to marine accidents, and will not miss the golden time of the initial response to the national disaster, which will help protect precious people, property and the environment.

Evaluating the Airtightness of Medium- and Low-Intermediate-Level Radioactive Waste Packaging Container through Finite Element Analysis (유한요소 해석을 통한 중·저준위 방사성폐기물 포장용기의 밀폐성 평가)

  • Jeong In Lee;Sang Wook Park;Dong-Yul Kim;Chang Young Choi;Yong Jae Cho;Dae Cheol Ko;Jin Seok Jang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.203-209
    • /
    • 2023
  • The increasing saturation challenges in storage facilities for Low- and Intermediate-Level Radioactive Waste call for a more efficient storage approach. Consequently, we have developed a square-structured container that features a storage capacity approximately 20% greater than that of conventional drum-type containers. Considering the need to contain various radioactive wastes from nuclear power usage securely until they no longer pose a threat to human health or the environment, this study focuses on evaluating the sealing efficacy of the newly designed rectangular container using finite element analysis. Since radioactive waste containers typically do not experience external forces except under special circumstances, our analysis simulated the impact of an external force, assuming a fall scenario. After fastening the bolts, we examined the vertical stress distribution on the container by applying the calculated external force. The analysis confirms the container's stable seal.

Studies on the Physico-chemical Properties of Vitrified Forms of the Low- and Intermediate-level Radioactive Waste (${\cdot}$저준위 방사성폐기물 유리고화체의 물리${\cdot}$화학적 특성 연구)

  • Kim, Cheon-Woo;Park, Byoung-Chul;Kim, Hyang-Mi;Kim, Tae-Wook;Choi, Kwan-Sik;Park, Jong-Kil;Shin, Sang-Woon;Song, Myung-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.839-845
    • /
    • 2001
  • In order to vitrify the Ion-Exchange Resin(IER), Dry Active Waste(DAW), and borate concentrate generated from the commercial nuclear facilities, the glass formulation study based on the their compositions was performed. Two glasses named as RG-1 and DG-1 were formulated as the candidate glasses for the vitrification of hte IER and DAW, respectively. A glass named as MG-1 was also formulated as a candidate glass for the vitrification of the mixed wastes containing the IER, DAW, and borate concentrate. The process parameters, product qualities, and economics were evaluated for the candidate glasses and confirmed experimentally for the some properties. The glass viscosity and electrical conductivity as the process parameters were in the desired ranges. the product qualities such as glass density, chemical durability, phase stability, etc. were satisfactory. In case of vitrifying the wastes using our developed glass formulation study, the volume reduction factors for the IER, DAW and mixed wastes were evaluated as 21, 89 and 75, respectively.

  • PDF

Development of Dust Recycling System and Dust Cleaner in Pipe during Vitrification of Simulated Non-Radioactive Waste (모의 비방사성폐기물의 유리화시 발생 분진의 재순환처리장치 및 배관 내 침적분진에 의한 막힘 방지용 제진장치의 개발)

  • Choi Jong-Seo;You Young-Hwan;Park Seung-Chul;Choi Seok-Mo;Hwang Tae-Won;Shin Sang-Woon
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.110-120
    • /
    • 2005
  • For utilizing vitrification to treat low and intermediate level waste, industrial pilot plant was designed and constructed in October 1999 at Daejon, Korea through the joint research program among NETEC, MOBIS and SGN. More than 70 tests were performed on simulated IER, DAW etc. including key nuclide surrogate(Cs, Co); this plant has been shown to vitrify the target waste effectively and safely, however, some dust are generated from the HTF(High Temperature Filter) as a secondary waste. In case of long term operation, it is also concerned that pipe plugging can be occurred due to deposited dust in cooling pipe namely, connecting pipe between CCM(Cold Crucible Melter) and HTF. In this regard, we have developed the special complementary system of the off-gas treatment system to recycle the dust from HTF to CCM and to remove the interior dust of cooling pipe. Main concept of the dust recycling is to feed the dust to the CCM as a slurry state; this system is regarded as of an important position in the viewpoint of volume reduction, waste disposal cost and glass melt control in CCM. The role of DRS(Dust Recycling System) is to recycle the major glass components and key nuclides; this system is served to lower glass viscosity and increase waste solubility by recycling B, Na, Li components into glass melt and also to re-entrain and incorporate into glass melt like Cs, Co. Therefore dust recycling is helpful to control the molten glass; it is unnecessary to consider a separate dust treatment system like a cementation equipment. The effects of Dust Cleaner are to prevent the pipe plugging due to dust and to treat the deposited dust by raking the dust into CCM. During the pilot vitrification test, overall performance assessment was successfully performed; DRS and Dust Cleaner are found to be useful and effective for recycling the dust from HTF and also removing the dust in cooling pipe. The obtained operational data and operational experiences will be used as a basis of the commercial facility.

  • PDF

Evaluation of Dark Spots Formated on the High Temperature Metal Filter Elements (고온 금속필터 element 표면에 생성된 반점에 대한 평가)

  • Park, Seung-Chul;Hwang, Tae-Won;Moon, Chan-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.3
    • /
    • pp.171-178
    • /
    • 2008
  • Metal filter elements were newly introduced to the high temperature filter(HTF) system in the low- and intermediate-level radioactive waste vitrification plant. In order to evaluate the performance of various metal materials as filter media, elements made of AISI 316L, AISI 904L, and Inconel 600 were included to the test set of filter elements. At the visual inspection to the elements performed after completion of each test, a few dark spots were observed on the surface of some elements. Especially they were found much more at the AISI 316L elements than others. To check the dark spots are the corrosion phenomena or not, two kinds of analyses were performed to the tested filter elements. Firstly, the surfaces or the cross sections of filter specimens cut out from both normal area and dark spot area of elements were analyzed by SEM/EDS. The results showed that the dark spots were not evidences of corrosion but the deposition of sodium, sulfur and silica compounds volatilized from waste or molten glass. Secondly, the ring tensile strength were analyzed for the ring-shape filter specimens cut out from each kind of element. The result obtained from the strength tested showed no evidence of corrosion as well. Conclusionally, depending on the two kinds of analysis, no evidences of corrosion were found at the tested metal filter elements. But the dark spots formed on the surface could reduce the effective filtering area and increase the overall pressure drop of HTF system. Thus, continuous heating inside filter housing up to dew point will be required normally. And a few long-period test should be followed for the exact evaluation of corrosion of the metal filter elements.

  • PDF

Relationship between In-situ Hydraulic Conductivity and Van Genuchten Parameters of Unsaturated Fractured Hornfels (불포화 균열 혼펠스의 현장 수리전도도와 반 게누텐 매개변수의 상관성)

  • Cheong, Jae-Yeol;Cho, HyunJin;Kim, Soo-Gin;Ok, Soonil;Kim, Kue-Young;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.147-160
    • /
    • 2020
  • Unsaturated hydraulic conductivity of near-surface unconsolidated layers depends on the physical properties and water content of the unconsolidated layers. So far, many studies have been conducted on the unsaturated hydraulic conductivity of near-surface unconsolidated layers. However, researches on hydraulic conductivity of unsaturated fractured rocks have been relatively rare. In relation to the construction of a low/intermediate level radioactive waste surface-disposal facility, this study compared and analyzed van Genuchten parameters (α, n) in the laboratory and the hydraulic conductivity obtained in field tests for fractured hornfels at a radioactive-waste disposal site of Korea. The relationship between the field hydraulic conductivity and van Genuchten parameters using data from the ten depth intervals of three boreholes resulted in that the correlation coefficient (R) between the hydraulic conductivity and the van Genuchten parameter α was 0.7607, showing positive correlation whereas the R between the hydraulic conductivity and the van Genuchten shape-defining parameter n was -0.8720, showing negative correlation. Hence, this study confirmed the relationship between the field hydraulic conductivity and the van Genuchten unsaturated functions for the unsaturated fractured hornfels.