• Title/Summary/Keyword: 중.저준위방사성폐기물처분장

Search Result 8, Processing Time 0.024 seconds

Investigation of Perception of Nuclear Power by the Local Residents Adjacent to Nuclear Installations (원자력 시설 주변 지역주민의 원자력에 대한 인식 조사)

  • Cho, Kyeong-Young;Moon, Joo-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.181-189
    • /
    • 2011
  • The smooth construction and operation of nuclear facilities requires understanding and support of both the local residents and the national people. It is essential that our country, which should maintain using nuclear energy for national energy security and economic growth, shall improve the social acceptance of nuclear energy. In order to identify the level of social acceptance of nuclear energy, this study investigated the perception of the local residents in Gyeongju and the public in other areas on a nuclear power plant and a low- and intermediate-level radioactive waste disposal facility through an individual interview. The subjects of the investigation were 450 persons. This study identified that perceptions of the respondents were somewhat dependent on the residential area, and derived the implications to be reflected in establishing the customized public-relation strategies.

Simulation of Unsaturated Fluid Flow on the 2nd Phase Facility at the Wolsong LILW Disposal Center (경주 중저준위방폐장 2단계 처분시설의 불포화 환경하에서 침투수 유동 해석)

  • Ha, Jaechul;Lee, Jeonghwan;Yoon, Jeonghyoun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.219-230
    • /
    • 2017
  • This study was conducted to predict and evaluate the uncertainty of safety after closure of the second phase surface disposal facility of the Gyeongju intermediate and low level repository in Korea. In this study, four scenarios are developed considering both intact and degraded states of multi-layered covers and disposal containers; also, the fluid flow by a rainfall into the disposal facility is simulated. The rainfall conditions are implemented based on the monthly average data of the past 30 years (1985~2014); the simulation period is 300 years, the management period regulated by institutional provisions. As a result of the evaluation of the basic scenario, in which the integrity of both of the containers and the covers is maintained, it was confirmed that penetration of rainfall does not completely saturate the inside of the disposal facility. It is revealed that the multiple cover layers and concrete containers effectively play the role of barrier against the permeation of rainfall.

Geochemical Characteristics of the Gyeongju LILW Repository II. Rock and Mineral (중.저준위 방사성폐기물 처분부지의 지구화학 특성 II. 암석 및 광물)

  • Kim, Geon-Young;Koh, Yong-Kwon;Choi, Byoung-Young;Shin, Seon-Ho;Kim, Doo-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.307-327
    • /
    • 2008
  • Geochemical study on the rocks and minerals of the Gyeongju low and intermediate level waste repository was carried out in order to provide geochemical data for the safety assessment and geochemical modeling. Polarized microscopy, X-ray diffraction method, chemical analysis for the major and trace elements, scanning electron microscopy(SEM), and stable isotope analysis were applied. Fracture zones are locally developed with various degrees of alteration in the study area. The study area is mainly composed of granodiorite and diorite and their relation is gradational in the field. However, they could be easily distinguished by their chemical property. The granodiorite showed higher $SiO_2$ content and lower MgO and $Fe_2O_3$ contents than the diorite. Variation trends of the major elements of the granodiorite and diorite were plotted on the same line according to the increase of $SiO_2$ content suggesting that they were differentiated from the same magma. Spatial distribution of the various elements showed that the diorite region had lower $SiO_2,\;Al_2O_3,\;Na_2O\;and\;K_2O$ contents, and higher CaO, $Fe_2O_3$ contents than the granodiorite region. Especially, because the differences in the CaO and $Na_2O$ distribution were most distinct and their trends were reciprocal, the chemical variation of the plagioclase of the granitic rocks was the main parameter of the chemical variation of the host rocks in the study area. Identified fracture-filling minerals from the drill core were montmorillonite, zeolite minerals, chlorite, illite, calcite and pyrite. Especially pyrite and laumontite, which are known as indicating minerals of hydrothermal alteration, were widely distributed in the study area indicating that the study area was affected by mineralization and/or hydrothermal alteration. Sulfur isotope analysis for the pyrite and oxygen-hydrogen stable isotope analysis for the clay minerals indicated that they were originated from the magma. Therefore, it is considered that the fracture-filling minerals from the study area were affected by the hydrothermal solution as well as the simply water-rock interaction.

  • PDF

Diffusivities of Co-60 through the Clay with varying bulk density. (점토층의 밀도 변화에 따른 Co-60의 확산속도)

  • Suk, Tae-Won;Kim, Hong-Tae;Mho, Se-Young
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.4
    • /
    • pp.265-274
    • /
    • 1995
  • Diffusivity of ions of radioactive species is an important factor for designing radwaste repositories. Clay minerals are used as a backfill material. In this study, diffusion of Co-60 ions through the bentonite having various densities has been studied, using a diffusion cell. The measured diffusivities of Co-60 ions decreased as the density of bentonite increased. The diffusivity of Co-60 ion decreased from $8.79{\times}10^{11}m^2/s$ to $6.82{\times}10-13m^2/s$ as the clay dry bulk density increased from 0.41 to 2.03g/cm3. The diffusivity of Co ion was larger than that of Sr ion at low density, but the diffusivity of Co ion decreased rapidly as the density of clay increased and became smaller than that of Cs ion at high density. This phenomenon is thought to be caused by the rapid decrease of the fraction of mobile cation since the chemical combination of Co ions with oxygen or oxide on clay surface and the entrance of Co ions into the crystal structure of clay increase as the clay density increases. This change should be considered especially in designing the clay back fill for low and intermediate radwaste disposal facilities.

  • PDF

Geochemical characteristics of a LILW repository I. Groundwater (중.저준위 방사성 폐기물 처분부지의 지구화학 특성 I. 지하수)

  • Choi, Byoung-Young;Kim, Geon-Young;Koh, Yong-Kwon;Shin, Seon-Ho;Yoo, Si-Won;Kim, Doo-Haeng
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.297-306
    • /
    • 2008
  • This study was carried out to identify the characteristics of hydrochemistry controlling groundwater chemical condition in a repository site of Gyeongju. For this study, 12 bore holes of all monitoring bore holes in the study area were selected and total 46 groundwater samples were collected with depth. In addition, 3 surfacewater samples and 1 seawater sample were collected. For water samples, cations and anions were analyzed. The environmental isotopes(${\delta}^{18}O-{\delta}D$, Tritium, ${\delta}^{13}C,\;{\cdot}{\delta}^{34}S$) were also analyzed to trace the origin of water and solutes. The result of ${\delta}^{18}O\;and\;{\delta}D$ analysis showed that surface water and groundwater were originated from precipitation. Tritium concentrations of groundwater decreased with depth but high concentrations of tritium indicated that groundwater was recharged recently. The results of ion and correlation analysis showed that groundwater types of the study area were represented by Ca-Na-$HCO_3$ and Na-Cl-$SO_4$, which was caused by sea spray and water-rock interaction. Especially, high ratio of Na content in groundwater resulted from ion exchange. For redox condition of groundwater, the values of DO and Eh decreased with depth, which indicated that reducing condition was formed in deeper groundwater. In addtion, high concentration of Fe and Mn showed that redox condition of groundwater was controlled by the reduction of Fe and Mn oxides.

  • PDF

A Study on the Introduction of the ETV for Disaster Prevention - Focusing on the Role of the Korea Coast Guard for the Prevention of Radioactive Waste Accidents and Marine Accidents - (재난 예방을 위한 ETV 도입에 관한 연구 - 방사성폐기물 사고 및 해양사고 예방을 위한 해양경찰의 역할을 중심으로 -)

  • Jin, Ho-hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.694-700
    • /
    • 2018
  • Korea has disposed of medium and low level radioactive waste generated by operating nuclear power plants permanently through the radioactive waste repository located in Gyeongju. However, the maritime transport of radioactive waste is exposed to the risk of marine accidents, and it will be necessary to introduce a system to secure safety from the viewpoint of the function and role of the Korea Coast Guard. Especially, Korea is affected by large-scale marine accidents, such as the Hebei Spirit or Sewol accidents. From this point of view, we analyzed the current status of Korea radioactive waste shipping and examined the response systems of major foreign countries. As a result of examining major cases of accidents, we have operated an Emergency Towing Vessel (ETV) fleet centering on European countries in order to respond urgently to marine casualties that may have social, regional and international effects, such as accidents of similar nuclear material carriers and dangerous cargo ships. It proves a partial effect. Based on this, we propose the introduction of the Korean ETV System. In other words, it is necessary to respond to large-scale marine accidents that could lead to enormous environmental, property, and personal damage, such as marine accidents involving nuclear material ships, large oil tankers, and large passenger ships. For this, it seems necessary to introduce Korea ETV, which can carry out emergency towing, oil pollution control function, large - scale rescue equipment and manpower. This will lead to the enhancement of the Korea Coast Guard response to marine accidents, and will not miss the golden time of the initial response to the national disaster, which will help protect precious people, property and the environment.