• Title/Summary/Keyword: 중합체

Search Result 395, Processing Time 0.022 seconds

A Study on the Oxidative Transformation of Quinone Compound using Nanostructured Black-birnessite (나노구조의 블랙-버네사이트를 이용한 퀴논계 화합물의 산화-변환 연구)

  • Harn, Yoon-I;Choi, Chan-Kyu;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.547-554
    • /
    • 2010
  • In this study, new manganese oxide (i.e., black-birnessite) particles with nanostructures were prepared and its physico-chemical properties and oxidative-transformation efficiency on 1,4-naphthoquinine(1,4-NPQ) in the presence of reactive mediator was investigated. The results were also compared with that of the manganese oxide (i.e., brown-birnessite) particles synthesized by classical McKenzie method. Analysis of XRD and SEM data show that the particles are a single phase corresponding to a birnessite-based manganese oxide with cotton ball-like shapes containing nanofibers. In batch experiments, removals of 1,4-NPQ by the black-birnessite follows pseudo-first-order kinetics and the rate constant values obtained are greater about 2.3 times than that of the brown-birnessite in spite of its lower surface area (41.0 vs 19.80 $m^2/g$). The results can be explained by the higher crystallinity and nano structured features of the back-birnessite particles, which give higher reactivity for the removals of the quinone compound. HPLC analysis of the reaction products confirmed that the balck-birnessites removed 1,4-NPQ through cross-coupling reaction in the presence of catechol as a reactive mediator.

Preparation and Characterization of Removal-type Acrylic Pressure-Sensitive Adhesive (4원 아크릴계 박리형 점착제의 제조와 특성에 관한 연구)

  • Seo, Young-Ok;Seul, Soo-Duk
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.225-236
    • /
    • 2001
  • In order to improve the properties of the copolymer and the terpolymer that was used as removal-type pressure sensitive adhesive(PSA), we synthesized quaterpolymer with the variation of the types of monomer, initiator, and solvent, and concentration, the monomer/solvent ratio, reaction temperature and time. and determined the properties of this adhesive: the viscosity, molecular weight, conversion, solid content and structure of polymer. The prepared polymer was crosslinked by changing the type of crosslinking agent and concentration, and then we investigated the characteristics or adhesive such as peel adhesion, shear adhesion, heat resistance, weathering resistance and peel adhesion to aging. The optimum performance of RA/2- EHA/MMA/2-HEMA as a PSA were obtained when benzoyl peroxide was used as an initiator with the reactant mixture consisted of 80% BA and 2-EHA, 15%, MMA, and 5% 2-HFMA. The optimum reaction temperature and time were $80^{\circ}C$ and 8 hours, respectively. For BA/2-EHA/MMA/AA, the optimum performance was obtained when the polymerization was performed at the monomer composition of 80% BA/2-EHA, 15% MMA, and 5% AA. BPO was used as initiator and the optimum reaction temperature and time were identical to those of BA/2-EHA/MMA/ 2-HEMA. Isocyanate and melamine were used to crosslink BA/2-EHA/MMA/2-HEMA and BA/2-EHA/MMA/AA, respectively. No effect on the type of cross-linking agent on the peel adhesion was observed with aging. The quarterpolymers crosslinked with melamine left residues on the counter surface after weathering resistance test, while the polymers crosslinked with isocyanate did not.

  • PDF

Synthesis of Naphthalimidopropyl Acrylate and GMA Copolymers and Their Physical Properties (나프탈이미도프로필 아크릴레이트와 GMA 공중합체의 합성과 물성)

  • Lim, Deok Jum;Oh, Seung Min;Kim, Boo Yoon;Park, Jae Kyung;Kang, Inn-Kyu;Seo, Kwan-Ho;Oh, Dae Hee
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.535-543
    • /
    • 2014
  • This work, which was about the synthesis of naphthalimidopropyl acrylate and GMA copolymers and their physical properties, investigated the compositions of the copolymer, the reactivity ratios of the monomer, resonance effect (Q), polar effect (e) and fluorescence of naphthalene. Azobisisobutyronitronitryl (AIBN) as an initiator was employed at $60^{\circ}C$ with dimethylformamide (DMF) of solvent for the copolymerization of NIPA. $r_1$ was found to be higher than $r_2$ from the reactivity ratios of the monomer obtained from Fineman-Ross (F-R), Kelen-$T{\ddot{u}}d{\ddot{o}}s$(K-T) methods. NIPA was found to be more copolymerized than GMA. $r_1{\cdot}r_2$ product was lower than 1, copolymerization was maked random-alternating type. The fluorescence spectrum of these polymers showed a weak monomer fluorescence band at 380 nm and a strong excimer fluorescence band at about 460 nm. Fluorescence life time of NIPA monomer showed fluorescence cover with UV 355 nm at room temperature, and life time showed $5.1449{\times}10^{-7}s$.

Pre-Irradiation Grafting of Acrylic Acid onto Polyethylene Film (전조사법에 의한 아크릴산의 폴리에틸렌 필름에 대한 그라프트 반응)

  • Nho, Young Chang;Jin, Joon-Ha;Lee, Myun Zu
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.75-82
    • /
    • 1996
  • Acrylic acid was graft-copolymerized on polyethylene film in the presence of additives such as acid and $FeSO_4(NH_4)_2SO_4{\cdot}6H_2O$ using peroxide grafting technique by ${\gamma}$-ray and electron beam, and the effect of $FeSO_4(NH_4)_2SO_4{\cdot}6H_2O$ and acid on the grafting yield was evaluated. The grafting mechanism and the physical property of grafted films were also examined. The results showed that the inclusion of $FeSO_4(NH_4)_2SO_4{\cdot}6H_2O$ in acidified acrylic acid grafting solution was extremely beneficial and led to a most unusual enhancement effect in the radiation grafting. In the other hand, inclusion of mineral acid in the grafting solution in the absence of $FeSO_4(NH_4)_2SO_4{\cdot}6H_2O$ could not lead to he suitable grafting reaction by the severe homopolymerization of acrylic acid. The addition of $H_2SO_4$, and HCl led to much higher grafting yield than $HNO_3$and $CH_3COOH$. It was shown that grafting yield of ${\gamma}$-ray irradiated-polyethylene was higher than that of electron beam irradiated polyethylene.

  • PDF

THE INHIBITORY EFFECT OF FRUCTAN-PRODUCING S. SALIVARIUS ON THE FORMATION OF ARTIFICIAL PLAQUE (Fructan 생성 S. salivarius의 인공치태 억제효과)

  • Park, So-Yung;Park, Eun-Hae;Oh, Jong-Suk;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.25-32
    • /
    • 2003
  • S. mutans is the most important causative bacteria of dental caries among the oral bacteria. S. salivarius is a normal inhabitant in the human oral cavity. Nine strains of S. salivarius in this study were isolated from the oral cavities of children and identified, and their effect on S. mutans and S. oralis was studied. 1. The mean weight of produced artificial plaque on the wires in the beaker was 204.9 mg in the culture of S. mutans only, whereas being reduced to 1.9 mg through 20.6mg in the combined culture of S. mutans and each S. salivarius isolate (p<0.05). The viable cell didn't show the difference between them after culturing. 2. When S. mutans was cultured in the media containing culture supernatant of each S. salivarius isolate in M17 broth, the mean weight of produced artificial plaque was 117.1 mg on the wires, whereas being 47.7 mg in the media containing culture supernatant of each S. salivarius isolate in M17 broth containing 5% sucrose. 3. The polymer produced by S. salivarius isolates was on the thin layer chromatography. 4. Inulin and levan didn't inhibit the formation of artificial plaque by S. mutans in the beaker test. These results suggested that fructan-producing S. salivarius isolates inhibited the formation of artificial plaque by S. mutans.

  • PDF

Differential Sialic Acid Content and Hemoglobin-binding Activity of Precursor Prohaptoglobin and Mature Haptoglobin (전구체 프로합토글로빈과 성숙 합토글로빈의 시알산 함량 및 헤모글로빈-결합력 비교)

  • Lee, Joo-Hyun;Oh, Mi-Kyung;Kim, In-Sook
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.632-639
    • /
    • 2017
  • Mature haptoglobin (Hp) is a plasma glycoprotein and acts as an antioxidant by scavenging cell-free hemoglobin (Hb). Prohaptoglobin (proHp) is an unprocessed Hp precursor which is present a little in circulation. However, the biological function of proHp remains unknown. To investigate the structural and functional differences between proHp and Hp, we prepared recombinant proHp isoforms and compared their sialic acid content and Hb-binding capacity with those of mature isoforms. When proHp samples were analyzed by Western blot under non-reducing conditions, proHp1 was detected as one band of approximately 130 kDa and proHp2 as multiple bands >200 kDa, in the manner of mature Hp1-1 and Hp2-2, respectively. On the native polyacrylamide gel under non-reducing and non-denaturing conditions, both proHp isoforms migrated more slowly than their mature Hp counterparts. In addition, the lectin-based ELISA assay demonstrated that the content of sialic acid in proHp1 and proHp2 was much less than in Hp1-1 and Hp2-2. The Hb-binding capacity of proHp was also lower than those of mature Hp. These findings indicate that proHp and Hp are similar in the size and polymerization pattern, but different in sialic acid content and Hb-binding activity. It suggests precursor proHp may exert different functions in circulation than does mature Hp.

Study on Graft Polymerization of Acrylate and Methacrylate Monomers onto the Carbon Black Surface (Carbon Black 표면에의 아크릴레이트 및 메타크릴레이트의 그라프트 중합에 관한 연구)

  • Goo, Hyung-Seo;Chang, Byung-Kwon;Kim, Yong-Moo;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.395-405
    • /
    • 1994
  • The various functional groups, such as hydroxyl(-OH), carboxyl(-COOH) and quinonic oxygen(OC<) on the carbon black(abbreviated to CB) surface were activated with n-butyl lithium solution in n-hexane and then acrylate and methacrylate monomers were graft polymerized onto these activated anionic sites and CB-grafted polymers were obtained. To separate homopolymers from reaction mixture, non-solvent precipitation method or centrifugal separating method were applied. Subsequently, conversion, grafting ratio and efficiency were determined at various reaction temperatures and times. In case of acrylates, the grafting ratio showed 20~30% but methacrylates showed 150~200%. Also the anion polymerizations between CB and monomers were nearly reached to equilibrium state within one or two hours under each reaction temperatures but conversion and grafting ratio were increased a little with reaction temperature increase. In colloidal dispersion stability test, before heat-drying, the all CB-grafted polymers showed good dispersed stability in good solvents for acrylic and methacrylic homopolymers. Futhermore, CB-polymethacrylates were found to show excellent collidal properties for good solvents of methacrylic homopolymer even after heat-drying. Identification of the grafted polyacrylates and polymethacrylates onto the CB surface was performed by FT-IR spectroscopy. In addition, electric resistance values of CB-grafted polymers were measured by Four-probe method, and the increase of the grafting ratio showed the increase of the surface resistance.

  • PDF

Studies on the Graft Polymerization of Polyethyleneglycol Monomethacrylate onto Chitosan and Drug(Vitamin B12) Permeation Behavior (키토산과 폴리에틸렌글리콜 모노메타크릴레이트의 그라프트중합과 약물(Vitamin B12)방출에 관한 연구)

  • Chung, Joo-Eun;Chung, Byung-Ok;Chang, Byung-Kwon;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.524-536
    • /
    • 1994
  • Chitosan is known to be a good biocompatible natural polymer. Polyethyleneglycol monomethacrylates(PEGM) were grafted onto chitosan and their reaction conditions and properties of the graft polymers obtained were estimated. Using ceric ammonium nitrate(CAN) as the initiator, the optimum condition for graft polymerization was determined amount of the initiator and monomer concentrations and reaction time. Grafting yields such as total conversion, the percentage of grafting and the efficiency of grafting were calculated and examined the optimum reaction condition for high grafting yields. The percentage of grafting and total conversion were maximum at condition that the concentration of initiator was $4{\sim}5{\times}10^{-3}M$, the concentration of monomer was 0.5~0.6M, the reaction time was 2~3 hours and the reaction temperature was about $40^{\circ}C$. Thermal characteristics, solubility for chitosan solvents and inherent viscosity of synthesized graft copolymers were investigated. In high initiator concentration, characteristics of chitosan were greatly diminshed. In case of inherent viscosities, chitosan-g-PE-90 was 2.81 dl/g, chitosan-g-PE-200, 3.01dl/g and chitosan-g-PE-350, 4.93dl/g. And a tendency of viscosity increase depending on the length of ethylene oxide residue was confirmed. Degree of swelling, tensile strength, elongation of membrane prepared from graft copolymers were determined. Properties of graft copolymers were affected by percentage of grafting and length of ethylene oxides residue in polyethylene glycol monomethacrylates. Tensile strength, elongation and degree of swelling of graft copolymers were remarkably improved than chitosan. As percentage of grafting increased, the amount of drug permeation was also increased.

  • PDF

A study on Crack Healing of Various Glassy Polymers (part I) -theoretical modeling- (유리질 중합체의 균열 Healing에 관한 연구 (제1보) -이론 모델링-)

  • Lee, Ouk-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.40-49
    • /
    • 1986
  • Crack, craze and void are common defects which may be found in the bulk of polymeric materials such as either themoplastics or thermosets. The healing phenomena, autohesion, of these defects are known to be a intrinsic material property of various polymeric materials. However, only a few experimental and theoretical investigations on crack, void and craze healing phenomena for various polymeric materials have been reported up to date [1, 2, 3]. This may be partly due to the complications of healing processes and lacking of appropriate theoretical developments. Recently, some investigators have been urged to study the healing phenomena of various polymenic materials since the significance of the use of polymer based alloys or composites has been raised in terms of specific strength and energy saving. In the earlier published reports [1, 2, 3, 4], the crack and void healing velocity, healing toughness and some other healing mechanical and physical properties were measured experimentally and compared with predicted values by utilizing a simple model such as the reptation model under some resonable assumptions. It seems, however, that the general acceptance of the proposed modeling analyses is yet open question. The crack healing processes seem to be complicate and highly dependent on the state of virgin material in terms of mechanical and physical properties. Furthermore, it is also strongly dependent on the histories of crack, craze and void development including fracture suface morphology, the shape of void and the degree of disentanglement of fibril in the craze. The rate of crack healing may be a function of environmental factors such as healing temperature, time and pressure which gives different contact configurations between two separated surfaces. It seems to be reasonable to assume that the crack healing processes may be divided in several distinguished steps like stress relaxation with molecular chain arrangement, surface contact (wetting), inter- diffusion process and com;oete healing (to obtain the original strength). In this context, it is likely that we no longer have to accept the limitation of cumulative damage theories and fatigue life if it is probable to remove the defects such as crack, craze and void and to restore the original strength of polymers or polymer based compowites by suitable choice of healing histories and methods. In this paper, we wish to present a very simple and intuitive theoretical model for the prediction of healed fracture toughness of cracked or defective polymeric components. The central idea of this investigation, thus, may be the modeling of behavior of chain molecules under healing conditions including the effects of chain scission on the healing processes. The validity of this proposed model will be studied by making comparisons between theoretically predicted values and experimentally determined results in near future and will be reported elsewhere.

  • PDF

Angiogenic Responce to Transmyocardial Mechanical Reveascularization(TMMR) with Polymer Myocardial Stent (고분자 중합체 심근 스템트를 이용한 기계적 경심근 혈류재건술의 혈관생성 반응)

  • Choi, Ho;Lee, Cheol-Joo;Moon, Kwang-Deok;Kim, Young-Jin;Kang, Joon-Kyu;Hong, Jun-Wha;Jee, Kyung-Soo;Han, Man-Jung;Cho, Sang-Ho
    • Journal of Chest Surgery
    • /
    • v.33 no.6
    • /
    • pp.494-501
    • /
    • 2000
  • Background: Transmyocardial laser revascularization(TMLR) for revascularizing ischemic myocardium in patients was originally based on the assumption that laser channels remain their patency much longer. But recent studies show that laser channels did not remain open and that TMLR could achieve treatment benefits without long-term channel patency. The angiongencesis is currently thought to be induced by non-specific inflammatory response to mechanical tissue injury. This study is to evaluate hypothesis that various transmyocaridal mechanical revascularization(TMMR) may induce the angiogenic responses similar to that seen with TMLR, and transmyocaridal polymer stent revascularization(TMSR), the polymer stent in the myocardial tissue is hydrolyzed in 2 weeks, may enhance the non-specific inflammatory reaction resulting angiogenesis. Furthermore, polymer myocaridal stent channels remain long-term patency. Material and Method: Eight domestic pigs underwent ligation of the proximal circumflex artery, and 2 weeks later they were randomized to undergo transmycardial acupunctural revascularization (TMPR, Group I) of the left lateral wall with 18-G needle(n=2), to undergo transmyocardial (TMDR, Group II) with industrial 2mm steel drill(n=2), to undergo transmyocardial polymer stent revascularization (TMSR, Group III) after drilling the infarcted myocardium(n=2), the stent is poly(lactic acid-co-glycolic acid), which is self-degradated in the myocardium, and to a control group the ischemic zone was unterated(n=2). All the pigs were sacrificed after 4 weeks TMMR. Sections from the ischemic zone were submitted for vascular endothelial growth factor (VEGF) ELISA and histology. Result: There were makedly increase in the VEGF immunoassay in the ischemic zone of the TMMR group compared to the ischemic zone of the control group(control: each 30.85 and 43.15pg/mg protein, TMPR: each 44.14 and 68.61 pg/mg protein, TMDR: each 65.92 and 78.65 pg/mg protein, TMSR: each 177.39 and 168.87 pg/mg protein). TMSR channels caused greatest VEGF expression than channels made by other group and the polymer stent channels remained vacuole after 4 weeks. Conclusion: Transmyocardial polymer stent revascularization promoted the most angiogenci response by the VEGF immunoassay, although our study did not show the statistical significancy. The channels remained but the flow patency was not verified. Transmyocardial polymer stent revascularization (TMSR) is desirable in future experimental trials and in view of the significant cost implications comparable to that of laser.

  • PDF