• Title/Summary/Keyword: 중합속도

Search Result 293, Processing Time 0.021 seconds

Preparation of Monodisperse Poly(Acrylic acid) with a Water-Soluble Initiator by Solution Polymerization in Aqueous Phase (수용액 내에서 수용성개시제를 이용한 단분산성 폴리아크릴산의 용액중합)

  • Park, Moonsoo;Kim, Yeji
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.232-238
    • /
    • 2014
  • Solution polymerization was conducted with water-soluble acrylic acid (AA) as a monomer and potassium persulfate (KPS) as an initiator at a selected temperature between $60^{\circ}C$ and $90^{\circ}C$ with water as a reaction medium. When the ratio between AA and water was reduced or initiator concentration increased, molecular weights decreased. An increase in the reaction temperature produced lower molecular weights. The polydispersity index was close to 1.5 in most of the reactions. An increase in the stirring speed up to 400 rpm led to a progressive increase in molecular weights. When the stirring speed reached 800 rpm, however, we found that both the number and weight average molecular weights decreased. The glass transition temperature was nearly independent of moelcular weights and determined to be between $113^{\circ}C$ and $116^{\circ}C$.

Radiation-Induced Graft Copolymerization of Acrylic Acid onto Polyester

  • Chang, Hoon-Sean;Kong, Young-Kun;Lee, Chong-Kwang;Park, Jae-Ho
    • Nuclear Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.65-74
    • /
    • 1977
  • The radiation-induced graft polymerization of acrylic acid onto polyester fabric was investigated with accelerated electron beams as ratiation source at high dose rates. Homopolymerization was suppressed by addition of cations which is known as homopolymerization inhibitor, but this practical advantage was obtained at the expense of grafting efficiency. The rate of grafting (%/sec) was proportional to the 0.82th power of dose rates over the range from 1.6$\times$10$^{6}$ to 10$\times$10$^{6}$ rad/sec. The grafted polyester fabric showed considerable improvement in moisture regain and antistatic properties.

  • PDF

Interpretation of Morphology and Rubber-Phase Particle Size Distribution of High Impact Polystyrene (내충격성 폴리스티렌의 형태구조 및 고무상 입도분포 해석)

  • 정한균;정대원;안경현;이승종;이성재
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.744-753
    • /
    • 2001
  • One of the most important factors which affect the impact strength of high impact polystyrene (HIPS) is the rubber-phase particle size and size distribution. In this study, HIPS was prepared from a batch reactor to observe the influence of reaction conditions such as rubber content, agitation speed and prepolymerization time on the particle size and size distribution. Measurements concerning the particle size distribution were conducted using a particle size analyzer. Due to swelling, the particle suspended in toluene increases in size with lower heat-treatment temperature and shorter heat-treatment time, while the particle in methyl ethyl ketone shows quite reasonable size without any effort of heat-treatment. As rubber content increases, the average particle size increases substantially, but the increase in agitation speed at lower rubber contents does not have much influence on the size. However, the polystyrene-phase particles occluded in rubber-phase become more uniform as agitation speed increases. Longer prepolymerization time produces rubber-phase particles with narrower particle size distribution.

  • PDF

Electrochemical Characteristics at Copolymeric film Electrodes of [Ru(v-bpy)$_3$]$^{2+}$ and Vinylbenzoic Acid Modified with Dopamine (Dopamine으로 수식된 [Ru(v-bpy)$_3$$^{2+}$와 Vinylbenzoic Acid의 공중합 피막 전극의 전기화학 특성)

  • 차성극;박유철;임태곤
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.782-788
    • /
    • 2001
  • The $[Ru(v-bpy)_3]^{2+}$ and vinylbenzoic acid (vba) were electrochemically copolymerized to afford electrodes modified with dopamine to study their properties such as electropolymerization rate, redox process, and electron transfer. The optimum mole ratio of the monomers was 5:2, which gave $1.84{ imes}10^{-2}s^{-1}$ of rate constant for first order reaction, while the ratio of the substances on the copolymeric film produced was 5:1.68. The formal potential produced from the hydroquinone=quinone+$2H^+2e^-$reaction at the electrode of GC/p- $[Ru(v-bpy)_3]^{2+}$/vba-dopamine was 0.17 V in phosphate buffer (pH=7.10). The electrocatalytic rate was $2.58{ imes}10^5cms^{-1}$;2.41 times faster than that of non-modified one. The mass change measured by EQCM was $3.28{ imes}10^3$$gmol^{-1}$ which is larger than that of non-modified one.

  • PDF

Spectroscopic Analysis of the Remote-plasma-polymerized Methyl Methacrylate Film (원격 플라즈마 중합된 메틸메타크릴레이트 필름의 분광학적 분석)

  • Seomoon, Kyu
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Plasma-polymerized methyl methacrylate (MMA) thin films were synthesized by remote plasma, and effects of plasma power, reaction pressure and direct-indirect plasma on the growth rate and chemical bonding were investigated with alpha-step, FT-IR, XPS and Langmüir probe method. As the plasma power and pressure increased, the tendency of growth rate showed maximum value at a certain range. FT-IR and XPS analyses revealed that composition ratio of C/O and hydrocarbon (C-C) % in the deposited films increased with plasma power, but ester (COO) C % decreased with it. Direct plasma method was effective for fast growth rate, but indirect plasma method was favorable for maintaining the chemical structure of MMA.

Anionic Polymerization of Hexafluoropropylene Oxide Using Hexafluoropropylene Oligomer (헥사플루오르프로필렌 올리고머를 사용한 헥사플루오르프로필렌 옥사이드의 음이온 중합)

  • Lee, Sang Goo;Ha, Jong-Wook;Park, In Jun;Lee, Soo-Bok;Lee, Jong Dae
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.80-85
    • /
    • 2013
  • Anionic polymerization of hexafluoropropylene oxide (HFPO) was investigated under various reaction conditions such as various hexafluoropropylene (HFP) oligomers composed of dimer and trimer, reaction temperatures, and feeding rates of hexafluoropropylene oxide monomer. HFP oligomer was synthesized from cesium fluoride (CsF) and HFP in tetraethyleneglycol dimethylether (TG). Under 5 g of CsF, 200 g of HFP, 10 g of TG, and reaction temperature $30^{\circ}C$, HFP dimer content in oligomer was relatively increased. HFPO oligomer with a high molecular weight ($M_w$ 3600) was synthesized in conditions of reaction temperature $0^{\circ}C$, HFP oligomer with 35.1% of dimer, and 1.85 g/min of HFPO feeding rate. Otherwise, chain transfer was increased under unoptimized reaction conditions. Consequently, it was found that reaction conditions impact chain propagation and chain transfer in the anionic polymerization of HFPO.

Control of Polyaniline Molecular Weight Based on p-aminodiphenylamine (p-aminodiphenylamine을 이용한 폴리아닐린 분자량 조절)

  • Hong Jang-Hoo;Jeon, Je Yeoul
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.75-79
    • /
    • 2009
  • The ratio of aniline dimer (p-aminodiphenylamine), which is a nucleation site of chain growth in a chemical polymerization of aniline monomer, to aniline monomer was controlled to synthesize polyaniline with the molecular weight ($M_w$) between 10000 and 20000 g/mol. The result of OCP measurement showed that the reaction rate of polymerization was increased as the mole ratio of dimer was increased. The increase in the molar ratio of dimer resulted in the shift of absorption wavelength of polyaniline to the short wavelength region on measurement of UV/Vis and the decrease of molecular weight on the measurement of GPC.

The Comparison between Ziegler-Natta and Zirconocene Catalyst on Reaction Conditions and Physical Properties in Polymer in Propylene Polymerization (프로필렌 중합에 있어서 Ziegler-Natta 촉매와 Zirconocene 촉매의 중합 조건과 중합체의 물성 비교)

  • 이성철;남영곤;정석진
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.437-444
    • /
    • 2000
  • Propylene polymerizations were carried out by using rac-Et(Ind)$_2$ZrCl$_2$ (Zirconocene catalyst) and a commercial third generation Ziegler-Natta catalyst in a semibatch reactor. From the polymerization reactions, the optimum reaction conditions and the physical properties of polymers produced from each catalyst system were investigated. The optimum reaction temperatures of rac-Et(Ind)$_2$ZrCl$_2$ and Ziegler-Natta catalyst were 5$0^{\circ}C$, 4$0^{\circ}C$, respectively. On the basis of the results for the produced polymer particle size distributions and the catalytic activities of polymerization reaction, the reaction temperature should be considered as an important factor for the successful polymerization reactions. Especially, the polymer was conglomerated in the higher reaction temperature. It was found that there was an upper limitation to co-catalyst concentration. Reaction rates and polymer yields rather decreased with increasing the concentration of to-catalyst, i.e., MAO and TEAl affected only polymerization activities, but the PEEB in Ziegler-Natta catalyst system affected isotactic indexes of produced polymer as well as activities. Based on these observations, the production yield seems to exhibit a first order lineal relationship to the partial pressure of monomer.

  • PDF

The Electrodeposition on Carbon Materials with In Situ Electrochemical Polymerization of 3-Octylthiophene (3-옥틸티오펜의 전기화학적 중합법에 의한 탄소재료의 표면 전착)

  • Jeon, Jae-Sook;Kim, Jeong-Jae;Lee, Kyung-Woo;Kim, Jeong-Soo
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.511-516
    • /
    • 2010
  • The electrochemical coating of poly(3-octylthiophene) on carbon materials was studied in order to investigate the application possibility of the modified carbon materials in the photoelectronic devices. Commercial carbon paper and carbon fiber were used as substrate electrodes for electrochemical coating. The coating behaviors were analysed with the variation of monomer and electrolyte concentration, applied potential, and cycling number in cyclovoltammetry. The coating rate of poly(3-octylthiophene) formed on the substrate were proportional to the monomer and electrolyte concentration, applied potential, and cycling number with each independent exponent. The structure and morphology of electrochemically polymerized poly(3-octylthiophene) was investigated with scanning electron microscopy and FTIR reflectance measurement.

Thermal Hazards of Polystyrene Polymerization Process by Bulk Polymerization (벌크 중합법에 의한 폴리스티렌 중합공정의 열적위험성)

  • Han, In-Soo;Lee, Jung-Suk;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • The aim of this study is to assess thermal hazards of polystyrene polymerization process by bulk polymerization with accelerating rate calorimeter(ARC) and Multimax reactor system(MM). From this study, we found out that the polymerization process should be operated at reaction temperature of $120^{\circ}C{\sim}130^{\circ}C$. At reaction temperature over $130^{\circ}C$, there was a runaway reaction hazard due to the temperature control failure following a viscosity increase of reaction products. With a cooling failure of a reactor in the early stage of process operation at the reaction temperature ($120^{\circ}C{\sim}130^{\circ}C$), there was a high thermal hazard of burst of a reactor's rupture disk or explosion of a reactor caused by the rapid rise of temperature and pressure to $340^{\circ}C$, 5.3 bar respectively within 30 - 50 minutes.