• Title/Summary/Keyword: 중증도 보정 사망비

Search Result 6, Processing Time 0.022 seconds

A Convergence Study in the Severity-adjusted Mortality Ratio on inpatients with multiple chronic conditions (복합만성질환 입원환자의 중증도 보정 사망비에 대한 융복합 연구)

  • Seo, Young-Suk;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.245-257
    • /
    • 2015
  • This study was to develop the predictive model for severity-adjusted mortality of inpatients with multiple chronic conditions and analyse the factors on the variation of hospital standardized mortality ratio(HSMR) to propose the plan to reduce the variation. We collect the data "Korean National Hospital Discharge In-depth Injury Survey" from 2008 to 2010 and select the final 110,700 objects of study who have chronic diseases for principal diagnosis and who are over the age of 30 with more than 2 chronic diseases including principal diagnosis. We designed a severity-adjusted mortality predictive model with using data-mining methods (logistic regression analysis, decision tree and neural network method). In this study, we used the predictive model for severity-adjusted mortality ratio by the decision tree using Elixhauser comorbidity index. As the result of the hospital standardized mortality ratio(HSMR) of inpatients with multiple chronic conditions, there were statistically significant differences in HSMR by the insurance type, bed number of hospital, and the location of hospital. We should find the method based on the result of this study to manage mortality ratio of inpatients with multiple chronic conditions efficiently as the national level. So we should make an effort to increase the quality of medical treatment for inpatients with multiple chronic diseases and to reduce growing medical expenses.

Comparison of Hospital Standardized Mortality Ratio Using National Hospital Discharge Injury Data (퇴원손상심층조사 자료를 이용한 의료기관 중증도 보정 사망비 비교)

  • Park, Jong-Ho;Kim, Yoo-Mi;Kim, Sung-Soo;Kim, Won-Joong;Kang, Sung-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1739-1750
    • /
    • 2012
  • This study was to develop the assessment of medical service outcome using administration data through compared with hospital standardized mortality ratios(HSMR) in various hospitals. This study analyzed 63,664 cases of Hospital Discharge Injury Data of 2007 and 2008, provided by Korea Centers for Disease Control and Prevention. We used data mining technique and compared decision tree and logistic regression for developing risk-adjustment model of in-hospital mortality. Our Analysis shows that gender, length of stay, Elixhauser comorbidity index, hospitalization path, and primary diagnosis are main variables which influence mortality ratio. By comparing hospital standardized mortality ratios(HSMR) with standardized variables, we found concrete differences (55.6-201.6) of hospital standardized mortality ratios(HSMR) among hospitals. This proves that there are quality-gaps of medical service among hospitals. This study outcome should be utilized more to achieve the improvement of the quality of medical service.

A study on the development of severity-adjusted mortality prediction model for discharged patient with acute stroke using machine learning (머신러닝을 이용한 급성 뇌졸중 퇴원 환자의 중증도 보정 사망 예측 모형 개발에 관한 연구)

  • Baek, Seol-Kyung;Park, Jong-Ho;Kang, Sung-Hong;Park, Hye-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.126-136
    • /
    • 2018
  • The purpose of this study was to develop a severity-adjustment model for predicting mortality in acute stroke patients using machine learning. Using the Korean National Hospital Discharge In-depth Injury Survey from 2006 to 2015, the study population with disease code I60-I63 (KCD 7) were extracted for further analysis. Three tools were used for the severity-adjustment of comorbidity: the Charlson Comorbidity Index (CCI), the Elixhauser comorbidity index (ECI), and the Clinical Classification Software (CCS). The severity-adjustment models for mortality prediction in patients with acute stroke were developed using logistic regression, decision tree, neural network, and support vector machine methods. The most common comorbid disease in stroke patients were hypertension, uncomplicated (43.8%) in the ECI, and essential hypertension (43.9%) in the CCS. Among the CCI, ECI, and CCS, CCS had the highest AUC value. CCS was confirmed as the best severity correction tool. In addition, the AUC values for variables of CCS including main diagnosis, gender, age, hospitalization route, and existence of surgery were 0.808 for the logistic regression analysis, 0.785 for the decision tree, 0.809 for the neural network and 0.830 for the support vector machine. Therefore, the best predictive power was achieved by the support vector machine technique. The results of this study can be used in the establishment of health policy in the future.

A Study on analysis of severity-adjustment length of stay in hospital for community-acquired pneumonia (지역사회획득 폐렴 환자의 중증도 보정 재원일수 분석)

  • Kim, Yoo-Mi;Choi, Yun-Kyoung;Kang, Sung-Hong;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1234-1243
    • /
    • 2011
  • Our study was carried out to develop the severity-adjustment model for length of stay in hospital for community-acquired pneumonia so that we analysed the factors on the variation in length of stay(LOS). The subjects were 5,353 community-acquired pneumonia inpatients of the Korean National Hospital Discharge In-depth Injury Survey data from 2004 through 2006. The data were analyzed using t-test and ANOVA and the severity-adjustment model was developed using data mining technique. There are differences according to gender, age, type of insurance, type of admission, but there is no difference of whether patients died in hospital. After yielding the standardized value of the difference between crude and expected length of stay, we analysed the variation of length of stay for community-acquired pneumonia. There was variation of LOS in regional differences and insurance type, though there was no variation according whether patients receive their care in their residences. The variation of length of stay controlling the case mix or severity of illness can be explained the factors of provider. This supply factors in LOS variations should be more studied for individual practice style or patient management practices and healthcare resources or environment. We expect that the severity-adjustment model using administrative databases should be more adapted in other diseases in practical.

The Relationship between the Cognitive Impairment and Mortality in the Rural Elderly (농촌지역 노인들의 인지기능 장애와 사망과의 관련성)

  • Sun, Byeong-Hwan;Park, Kyeong-Soo;Na, Baeg-Ju;Park, Yo-Seop;Nam, Hae-Sung;Shin, Jun-Ho;Sohn, Seok-Joon;Rhee, Jung-Ae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.3 s.58
    • /
    • pp.630-642
    • /
    • 1997
  • The purpose of this study was to examine the mortality risk associated with cognitive impairment among the rural elderly. The subjective of study was 558 of 'A Study on the Depression and Cognitive Impairment in the Rural Elderly' of Jung Ae Rhee and Hyang Gyun Jung's study(1993). Cognitive impairment and other social and health factors were assessed in 558 elderly rural community residents. For this study, a Korean version of the Mini-Mental State Examination(MMSEK) was used as a global indicator of cognitive functioning. And mortality risk factors for each cognitive impairment subgroup were identified by univariate and multivariate Cox regression analysis. At baseline 22.6% of the sample were mildly impaired and 14.2% were severely impaired. As the age increased, the cognitive function was more impaired. Sexual difference was existed in the cognitive function level. Also the variables such as smoking habits, physical disorders had the significant relationship with cognitive function impairment. Across a 3-year observation period the mortality rate was 8.5% for the cognitively unimpaired, 11.1% for the mildly impaired, and 16.5% for the severly impaired respendents. And the survival probability was .92 for the cognitively unimpaired, .90 for the mildly impaired, and .86 for the severly impaired respondents. Compared to survival curve for the cognitively unimpaired group, each survival curve for the mildly and the severely impaired group was not significantly different. When adjustments models were not made for the effects of other health and social covariates, each hazard ratio of death of mildly and severely impaired persons was not significantly different as compared with the cognitively unimpaired. But, as MMSEK score increased, significantly hazard ratio of death decreased. Employing Cox univariate proportional hazards model, statistically other significant variables were age, monthly income, smoking habits, physical disorders. Also when adjustments were made for the effects of other health and social covariates, there was no difference in hazard ratio of death between those with severe or mild impairment and unimpaired persons. And as MMSEK score increased, significantly hazard ratio of death did not decrease. Employing Cox multivariate proportional hazards model, statistically other significant variables were age, monthly income, physical disorders. Employing Cox multivariate proportional hazards model by sex, at men and women statistically significant variable was only age. For both men and women, also cognitive impairment was not a significant risk factor. Other investigators have found that cognitive impairment is a significant predictor of mortality. But we didn't find that it is a significant predictor of mortality. Even though the conclusions of our study were not related to cognitive impairment and mortality, early detection of impaired cognition and attention to associated health problems could improve the quality of life of these older adults and perhaps extend their survival.

  • PDF

Effect of hyperglycemia on mortality rates in critically ill children (소아 중환자에서 고혈당과 사망률과의 관계)

  • Kim, Seonguk;Kim, Bo Eun;Ha, Eun Ju;Moon, Mi Young;Park, Seong Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.3
    • /
    • pp.323-328
    • /
    • 2010
  • Purpose : To verify the effect of hyperglycemia on mortality rates in critically ill children and to identify the blood glucose level that influences prognosis. Methods : From July 2006 to June 2008, a total of 206 patients who were admitted to the pediatric intensive care unit (PICU) at Asan Medical Center and who survived for more than 7 days were retrospectively reviewed. We analyzed the maximum glucose value within 7 days in PICU, PRISM-III score and SOFA score within 24 hours, and mortality. We did not perform an adjustment analysis of drugs affecting glucose level. Results : The maximum glucose level within 7 days in PICU was higher in the nonsurvival group than in the survival group. Using 4 cutoff values (125, 150, 175, and 200 mg/dL), the mortality of patients with hyperglycemia was found to be 13.0 %, 14.4%, 19.8%, and 21.1%, respectively, and the cutoff values of 175 and 200 mg/dL revealed significant differences in mortalities between the hyperglycemic and normoglycemic groups. The PRISM-III score was not significantly different between the hyperglycemic and normoglycemic groups under a glucose cutoff value of 175 mg/dL, but the SOFA score was higher in the hyperglycemic group. Under a glucose cutoff value of 200 mg/dL, the PRISM-III score was higher in the hyperglycemic group, and the SOFA score did not differ between the 2 groups. Conclusion : Hyperglycemia with a maximal glucose value ${\geq}175\;mg/dL$ during the first 7 days after PICU admission was associated with increased mortality in critically ill children.