• Title/Summary/Keyword: 중저준위방사성폐기물 처분시설

Search Result 37, Processing Time 0.018 seconds

Concrete Degradation Comparison of Computer Programs for Post-Closure Safety Assessment of Wolsong Low-and Intermediate-Level Radioactive Waste Disposal Facility (월성원자력환경관리센터 폐쇄 후 안전평가 컴퓨터프로그램의 콘크리트 열화현상에 대한 상호비교)

  • Jung, Kang-Il;Bang, Je-Heon;Park, Jin Beak;Yoon, Jeong Hyoun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.311-324
    • /
    • 2013
  • To ensure the reliability of computer programs used for the post-closure safety assessment in the Wolsong LILW Center, the results from MASCOT, SAFE-ROCK and GOLDSIM programs are compared with a problem for degradation. Advantages and disadvantages of each computer programs are individually analyzed. Effects on the individual dose are assessed with each computer programs. MASCOT and SAFE-ROCK showed similar results for $^{129}I$ and $^3H$. However, GOLDSIM represented different results for $^{129}I$ and $^3H$. It is analyzed further and compared with the fluxes in each barrier of the disposal system. Througout the benchmarking testing of the computer program, the limitation of computer program can be continuously found out for the mature post-closure safety of Korean radwaste disposal system.

Characteristics of the Ancient Tombs and Application to Cover Design of a Near-surface Disposal Facility : Literature Survey (삼국시대고분의봉분특징과천층처분시설처분덮개에활용: 고분의발굴문헌을중심으로)

  • Park Jin-Beak;Lee Ji-Hoon;Park Joo-Wan;Kim Chang-Lak;Yang Si-Eun;Lee Sun-Bok
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.221-230
    • /
    • 2005
  • To support the design concept and performance evaluation of the cover system for low- and intermediate-level radioactive waste(LILW) disposal facility, the pioneering study is conducted with the tomb of historical age. Research status of the art are followed and the characteristics of tomb cover are summarized based on the preservation of historical remains. Visiting the excavation site of historical tomb and communication with Korean archeological society is required for the further understanding and for the extension of radioactive waste disposal research.

  • PDF

Prediction of Radionuclide Inventory for the Low- and Intermediate-Level Radioactive Waste Disposal Facility by the Radioactive Waste Classification (방사성폐기물 신분류기준을 고려한 중저준위 방사성폐기물 처분시설의 핵종재고량 예측)

  • Jung, Kang Il;Jeong, Noh Gyeom;Moon, Young Pyo;Jeong, Mi Seon;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.1
    • /
    • pp.63-78
    • /
    • 2016
  • To meet nuclear regulatory requirements, more than 95% individual radionuclides in the low- and intermediate-level radioactive waste inventory have to be identified. In this study, the radionuclide inventory has been estimated by taking the long-term radioactive waste generation, the development plan of disposal facility, and the new radioactive waste classification into account. The state of radioactive waste cumulated from 2014 was analyzed for various radioactive sources and future prospects for predicting the long-term radioactive waste generation. The predicted radionuclide inventory results are expected to contribute to secure the development of waste disposal facility and to deploy the safety case for its long-term safety assessment.

Introduction to Current Status and Researches for Rock Engineering of Finnish Geological Disposal of Spent Fuel (핀란드의 사용후핵연료 지층처분 현황 및 암반공학 관련 연구소개)

  • Hong, Suyeon;Kwon, Saeha;Min, Ki-Bok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.4
    • /
    • pp.215-229
    • /
    • 2019
  • This technical note describes the current status of Finnish radioactive waste disposal project which started to construct the repository for spent nuclear waste for the first time in the world. Finland started operating nuclear power plant in 1977 and is currently operating four nuclear power plants. After detailed site surveys started in 1993, Olkiluoto was finally selected by the parliament of Finland as the site for geological disposal in 2001 followed by a construction license in 2015. If the operating license is approved by the government in the 2020s, it would be the world's first case of geological disposal. In ONKALO, a site-specific underground research facility at the site of Olkiluoto, various studies were conducted to verify the safety of the repository. Finland uses the KBS-3 disposal concept, and Korea considers a similar disposal concept because of similar rock formations. The entire process in Finland including the operation status of intermediate and low-level waste disposal, site investigation and selection stages, and the latest rock mechanics and hydrogeological studies in ONKALO are presented. Suggestions for the radioactive waste disposal in Korea is given based on the Finnish case.

Development of Methodology for Fracture Network Analysis in the Unsaturated Zone using MINC Approach in TOUGH2 Code (TOUGH2 전산코드의 MINC 기법을 이용한 불포화 암반 내 단열 해석 방법론 개발)

  • Ha, Jaechul;Cheong, Jae-yeol;Kim, Soogin;Yoon, Jeonghyoun
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.325-330
    • /
    • 2016
  • The second phase of low- and intermediate-level waste (LILW) disposal facility is under planned on the sedimentary rock in unsaturated zone. In this study, we created two meshes which were a matrix continuum mesh and a fracture continuum mesh to carry out 2 dimensional numerical modeling for groundwater flow in the unsaturated zone containing fractures focused on the second phase of LILW disposal facility. Two continuum meshes were developed using MINC in meshmaker module of TOUGH2 code. A fracture continuum mesh was included the k-field distribution of the permeability derived from the Discrete Fractured Network (DFN) modeling. To apply the unsaturated zone for the modeling, the gridding steps to generate mesh were developed. Each step to generate a mesh consisted of definition of materials, setting the initial conditions and creating grids using MINC. The methodology development of meshes in this study will be applied for more precise modeling of groundwater flow and mass transport.

Hydrogeochemistry and Statistical Analysis for Low and Intermediate Level Radioactive Waste Disposal Site in Gyeongju (경주 중·저준위 방폐장의 수리지화학 및 통계 분석)

  • Soon-Il Ok;Sieun Kim;Seongyeon Jung;Chung-Mo Lee
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.629-642
    • /
    • 2023
  • Currently, low and intermediate level radioactive waste is being disposed of at the Gyeongju disposal site for permanent isolation. Since 2006, the Korea Radioactive Waste Agency has been conducting site characteristics surveys continuously verifying changes in the site based on the site monitoring and investigation plan. The hydrogeochemical environment of the disposal site is considered for the evaluation of natural barriers. However, the seawater must be considered because of the regional characteristics of Gyeongju, which is near the East Sea. Therefore, this study, collected 30 samples for deriving the groundwater quality data from seven wells and compared with two seawater samples collected from October 2017 to June 2022. Additionally, the study explores the groundwater monitoring method using statistical tools such as clustering and background concentration analysis. The groundwater samples in the study area were classified into two to four clusters depending on their chemical constituents-especially, EC, HCO3, Na, and Cl-using statistical analysis, molar ratio, and K-means clustering.

Fracture Flow of Radionuclides in Unsaturated Conditions at LILW Disposal Facility (불포화 암반 파쇄대를 통한 핵종 이동)

  • Kim, Won-Seok;Kim, Jungjin;Ahn, Jinmo;Nam, Seongsik;Um, Wooyong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.8
    • /
    • pp.465-471
    • /
    • 2015
  • Adsorption experiments for radionuclides such as $^3H$, $^{90}Sr$ and $^{99}Tc$ were conducted using fractured rock collected in unsaturated zone. The released radionuclide through artificial barrier from the near surface repository can be transported by the flow of rainfall or pore water through fractures in unsaturated zone and reach to groundwater flow. Therefore, it is important to investigate transport behavior (retardation) of radionuclides through fractured rock for the safety assessment and long-term performance of repository. Fractured rock samples were collected and characterized by X-ray microtomography (XMT) analysis, which can be used to develop a more robust unsaturated fracture transport model. When fracture-filling materials are exist, distribution coefficient of $^{90}Sr$ is higher than without fracture-filling materials. In this study, batch sorption distribution coefficient ($K_d$) of radionuclide was determined and used to increase our understanding of radionuclide retardtion through fracture-filling materials.