보다 효과적인 색인어 추출 및 색인어 가중치 결정을 위하여 문서의 내용뿐 아니라 구조를 이용하여 색인을 추출하는 연구가 이루어지고 있는데, 대부분의 연구들이 XML 태그의 중요도가 아닌, 문맥상의 단락에 대한 중요도를 계산하는게 일반적이다. 이러한 기존 연구들은 대부분이 객관적인 실험을 통해서 중요도를 입증하기보다는 상식적인 관점에서 단순한 수치로 중요도를 결정하고 있다. 본 논문에서는 웹 문서 관리를 위한 표준으로 자리잡아가고 있는 XML 문서의 태그 정보를 이용한 자동색인을 위하여, 논문을 구성하는 주요 태그를 중요도에 따라 분류하고, 낮은 태그에서 추출된 용어 가중치를 계산하고, 그 가중치로 높은 가중치의 태그에서 추출된 용어의 가중치를 갱신해 가면서 최종 가중치를 계산하는 방법을 제안한다. 보다 객관적인 가중치 결정을 위하여 사용자가 중요하게 생각하는 태그를 실험해 보고 그에 따라 중요도를 분류하여 가중치 계산에 반영한다. 그리고 기존 태그 중요도 결정 방법을 적용하여 계산된 색인어 가중치를 이용한 검색성능과 비교함으로써 본 논문에서 제안한 방법을 적용하여 계산된 색인어 가중치의 효과를 검증한다.
Proceedings of the Korea Multimedia Society Conference
/
2001.11a
/
pp.423-428
/
2001
유전 알고리즘을 이용한 정보 필터링 에이전트는 기존의 검색엔진에서 찾고자 하는 문서에 대해 검색된 문서의 유사도가 낮은 문제점을 해결한다. 본 논문에서는 HTML 태그의 중요도 가중치와 HTML 태그 안의 위치에 대한 가중치를 유전 알고리즘을 이용하여 학습한다. 여기서 학습된 가중치가 높은 태그와 태그 안의 위치 그리고 출현하는 빈도수에 대한 중요도 가중치를 다시 유전 알고리즘을 이용하여 학습하고 여기서 학습된 가중치로 검색된 문서를 필터링하여 정보 검색 성능을 향상시킬 수 있는 방법을 제안한다. 이 때 태그의 중요도 가중치 값을 학습하는 방법으로 하나의 태그를 유전자로 매핑하고 일련의 태그 집합을 염색체로 표현한 유전 알고리즘을 이용한다. 태그 안의 위치에 대한 중요도 가중치 값도 같은 방법을 이용한다. 여기서 나온 태그와 위치 그리고 빈도 수에 대한 중요도 가중치 값을 다시 유전자 알고리즘 이용하여 계산하다. 이 값으로 검색된 문서를 필터링하여 기존의 정보검색보다 검색자가 원하는 검색문서에 상당한 정확율을 제공하는 방법을 제안한다.
보다 효과적인 색인어 추출 및 색인어 가중치 결정을 위하여 문서의 내용뿐 아니라 구조를 이용하여 색인을 추출하는 연구가 이루어지고 있는데, 대부분의 연구들이 XML 태그의 중요도가 아닌, 문맥상의 단락에 대한 중요도를 계산하거나 HTML 문서 태그의 중요도 결정에 관한 연구들이다. 이러한 기존 연구들은 대부분이 객관적인 실험을 통해서 중요도를 입증하기보다는 상식적인 관점에서 단순한 수치로 중요도를 결정하고 있다. 본 논문에서는 웹 문서 관리를 위한 표준으로 자리잡아가고 있는 XML 문서의 태그 정보를 이용한 자동색인을 위하여, 논문을 구성하는 주요 태그의 가중치를 계산하는 방법을 제안한다. 보다 객관적인 가중치 결정을 위하여 인용된 문서간의 관계를 알아보고 서로 연관이 있을 확률을 계산하여 그 기대치만큼 색인어에 대한 가중치에 반영한다. 그리고 기존 태그 중요도 결정 방법을 적용하여 계산된 색인어 가중치를 이용한 검색성능과 비교함으로써 본 논문에서 제안한 방법을 적용하여 계산된 색인어 가중치의 효과를 검증한다.
For more effective index extraction and index weight determination, studies of extracting indices are carried out by using document content as well as structure. However, most of studies are concentrating in calculating the importance of context rather than that of XML tag. These conventional studies determine its importance from the aspect of common sense rather than verifying that through an objective experiment. This paper, for the automatic indexing by using the tag information of XML document that has taken its place as the standard for web document management, classifies major tags of constructing a paper according to its importance and calculates the term weight extracted from the tag of low weight. By using the weight obtained, this paper proposes a method of calculating the final weight while updating the term weight extracted from the tag of high weight. In order to determine more objective weight, this paper tests the tag that user considers as important and reflects it in calculating the weight by classifying its importance according to the result. Then by comparing with the search performance while using the index weight calculated by applying a method of determining existing tag importance, it verifies effectiveness of the index weight calculated by applying the method proposed in this paper.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.169-171
/
2005
그래프를 사용하는 데이터 표현법은 직$\cdot$간접적으로 실세계를 표현하는 다양한 데이터 모델 중에서 가장 일반화된 방법으로 알려져 있다. 기본적으로 그래프는 정점과 간선으로 구성되며, 정점과 간선은 그 중요도나 운영 목적에 따라 다양한 가중치가 부여될 수 있다. 특히, 이러한 그래프를 순회하는 트랜잭션들로부터 중요한 순회패턴을 탐사하는 것은 흥미로운 일이다. 본 논문에서는, 정점과 간선에 가중치가 있고 방향성을 가진 기반 그래프가 주어졌을 때, 그 그래프를 순회하는 트랜잭션들로부터 가중치를 고려하여 빈발 순회패턴을 탐사하는 방법을 제안한다. 또한, 이렇게 탐사한 결과에 가중치를 고려한 중요도를 평가하여 빈발 순회패턴들 간의 우선순위를 결정할 수 있도록 한다. 이 과정에서 발생할 수 있는 트랜잭션 노이즈는 기반 그래프의 간선 가중치의 평균과 표준편차를 이용하여 제거함으로써 보다 신뢰성 있는 빈발 순회패턴을 탐사할 수 있다. 제안한 논문은 웹 로그 마이닝 등 그래프를 이용하는 다양한 응용 분야에 적용할 수 있을 것이다.
Proceedings of the Korean Society for Information Management Conference
/
2003.08a
/
pp.253-261
/
2003
역문헌빈도 가중치는 문헌 집단에서 출현빈도가 낮을수록 색인어의 중요도가 높다는 가정에 근거하고 있다. 이 연구에서는 역문헌빈도 가중치의 가정에 의문을 제기하고, 이를 보완하는 새로운 문헌빈도 가중치 공식을 제안하였다. 제안한 가중치 공식은 저빈도어가 아닌 중간빈도어가 더 중요하다는 가정에 근거한 것으로서 역시 문헌빈도를 이용한 함수이다. 문헌빈도에 의한 가중치를 문헌의 색인어에 부여하는 경우와 질의어에 부여하는 경우로 나누어서 실험을 수행하고, 두 경우의 차이점을 논하였다.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.244-246
/
2001
최근 군집화와 분류기법이 데이터 마이닝에 중요한 도구로 많은 응용분야에 사용되고 있다. 따라서 이러한 기법을 이용하는데 있어서 각각의 속성의 중요도가 달라 중요하지 않은 속성에 의해 중요한 속성이 왜곡되거나 때로는 마이닝의 결과가 잘못되는 결과를 얻을 수 있으며, 또한 전체 데이터를 사용할 경우 마이닝 과정을 저하시키는 문제로 속성 가중치과 속성선택에 과한 연구가 중요한 연구의 대상이 되고 있다. 최근 연구되고 있는 알고리즘들은 사용자의 의도와는 상관없이 데이터간의 관계에만 의존하여 가중치를 설정하므로 사용자가 마이닝 결과를 쉽게 이해하고 분석할 수 없는 문제점을 안고 있다. 본 논문에서는 클래스 정보가 있는 데이터뿐 아니라 클래스 정보가 없는 데이터를 분석할 경우 사용자의 의도에 따라 학습할 수 있도록 각 가중치를 부여하는 속성가중치 알고리즘을 제안한다. 또한 사용자가 의도한 정보를 이용하여 속성간의 가장 최적화 된 가중치를 찾아주며, Cramer's $V^2$함수를 적합도 함수로 하는 유전자 알고리즘을 사용한다. 알고리즘의 타당성을 검증하기 위해 전자상거래상의 실험 데이터와 몇 가지 벤치마크 데이터를 이용하여 본 논문의 타당성을 보인다.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.510-512
/
2003
본 논문에서는 문서의 자동 분류를 위한 용어 빈도 가중치 계산 방법으로 Box-Cox변환기법을 응용한 정규화 용어빈도 가중치를 정의하고, 이를 문서 분류에 적응하였다. 여기서 Box-Cox 변환기법이란 자료를 정규분포화 할 때 적용하는 통계적인 변환방법으로서, 본 논문에서는 이를 응용하여 새로운 용어빈도가중치 계산법을 제안한다. 문서에서 등장한 용어 빈도는 너무 많거나 적게 등장할 경우, 중요도가 떨어지게 되는데, 이는 용어의 중요도가 빈도에 따른 정규분포로 모델링 될 수 있다는 것을 의미한다. 또한 정규화 가중치 계산방법은 기존의 용어빈도 가중치 공식과 비교할 때, 용어마다 계산방법이 달라져, 로그나 루트와 같은 고정된 가중치 방법보다는 좀더 일반적인 방법이라 할 수 있다. 신문기사 8000건을 대상으로 4개의 그룹으로 나누어 실험 한 결과, 정규화 용어빈도가중치 계산방법이 모두 우위의 분류 정확도롤 가져, 본 논문에서 제안한 방법이 타당함을 알 수 있다.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.236-236
/
2021
최근 텍스트와 같은 비정형 데이터의 생성 속도가 급격하게 증가함에 따라, 이를 분석하기 위한 기술들의 필요성이 커지고 있다. 텍스트 마이닝은 자연어 처리기술을 사용하여 비정형 텍스트를 정형화하고, 문서에서 가치있는 정보를 획득할 수 있는 기법 중 하나이다. 텍스트 마이닝 기법은 일반적으로 각각의 분서별로 특정 용어의 사용 빈도를 나타내는 문서-용어 빈도행렬을 사용하여 용어의 중요도를 나타내고, 다양한 연구 분야에서 이를 활용하고 있다. 하지만, 문서-용어 빈도 행렬에서 나타내는 용어들의 빈도들은 문서들의 차별성과 그에 따른 용어들의 중요도를 나타내기 어렵기때문에, 용어 가중치를 적용하여 문서가 가지고 있는 특징을 분류하는 방법이 필수적이다. 다양한 용어 가중치를 적용하는 방법들이 개발되어 적용되고 있지만, 환경 분야에서는 용어 가중치 기법 적용에 따른 효율성 평가 연구가 미비한 상황이다. 또한, 환경 이슈 분석의 경우 단순히 문서들에 특징을 파악하고 주어진 문서들을 분류하기보다, 시간적 분포도에 따른 각 문서의 특징을 반영하는 것도 상대적으로 중요하다. 따라서, 본 연구에서는 텍스트 마이닝을 이용하여 2015-2020년의 서울지역 환경뉴스 데이터를 사용하여 환경 이슈 분석에 적합한 용어 가중치 기법들을 비교분석하였다. 용어 가중치 기법으로는 TF-IDF (Term frequency-inverse document frquency), BM25, TF-IGM (TF-inverse gravity moment), TF-IDF-ICSDF (TF-IDF-inverse classs space density frequency)를 적용하였다. 본 연구를 통해 환경문서 및 개체 분류에 대한 최적화된 용어 가중치 기법을 제시하고, 서울지역의 환경 이슈와 관련된 핵심어 추출정보를 제공하고자 한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2008.04a
/
pp.197-198
/
2008
본 논문에서는 신경망의 가중치와 정보이론을 이용한 속성선택 기법을 제안하였다. 제안된 방법은 정보이론의 상호정보량을 이용하여 각 속성들의 중요도를 평가한 후 중요도가 높은 속성들만을 선택하여 신경망의 입력으로 사용한다. 신경망의 입력으로 선택된 속성의 가중치에 대한 평가를 통하여 오차에 큰 영향을 미치는 속성들을 순차적으로 제거하여 가장 우수한 속성들을 구한다. 제안된 기법의 성능을 평가하기 위하여 다양한 패턴 분류 문제에 적용하고 그 성능이 우수함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.