• Title/Summary/Keyword: 중앙 자오선

Search Result 5, Processing Time 0.021 seconds

A Study on the Optimal Combination of Central Meridian and Scale Factor of UTM-K for Application of Korea Peninsula (한반도 전역에 적용할 최적의 UTM-K 투영 중앙자오선 및 축척계수 결정에 관한 연구)

  • Lee, Hee-Bum;Heo, Joon;Kim, Woo-Sun;Lee, Jung-Bin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.1
    • /
    • pp.39-45
    • /
    • 2007
  • In this paper, a research has been conducted to find out the optimal combination of central meridian and scale factor of UTM-K to apply for the whole area of Korean peninsula. For this research, various combinations of central meridian and stale factor are set up and the cumulated level or distortion for each combination has been computed and compared to each other. In the case of using the central meridian and scale factor defined in the present UTM-K, the level of distortion shows about $47.0837{\times}10^{-2}$. On the other hand, the minimum distortion which is about $21.0495{\times}10^{-2}$ can be obtained when the $127^{\circ}26'$ for the central meridian and 0.99991 for scale factor are used for computation. Consequently, we can conclude that later result is the optimum combination of central meridian and scale factor for the Korean peninsula.

Analysis of Map Projection Distortion for UTM-K (UTM-K 도입에 따른 지도 투영왜곡 분석)

  • Song, Yeong-Sun;Heo, Joon;Sohn, Hong-Gyoo;Kim, Woo-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.4
    • /
    • pp.313-318
    • /
    • 2006
  • Recently, the single plane coordinate system which has one origin is required to create and manage continuous geographic framework data of entire Korean peninsula. For this, UTM-K (Univercial Transverse Mercator-K) was established in 2005. In this paper, the level of distortion was analyzed with respect to the central meridian and scale factor of UTM-K. The latitude and longitude values of the center point of 1/25000 scale digital maps were used for calculating the scale factor which was created by projection and the scale factor was used for index that presents the degree of distortion. As a result, accumulated distortion of scale factor by UTM-K map projection showed about $23.744{\times}10^{-2}$. On the other hand, the minimum distortion which was about $5.1435{\times}10^{-2}$ occurred when central meridian is $127^{\circ}\;42'$ and scale factor of central meridian was 0.99994 respectively.

A Study on the Optimization of Coordinate System for Digital Mapping (수치지도 좌표체계의 최적화 방안에 관한 연구)

  • Kim, Yong-Il;Lee, Chang-No
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.1 s.5
    • /
    • pp.37-44
    • /
    • 1995
  • Cartesian coordinate systems used in national base map have 3 zones. If these coordinate systems are used at navigable digital maps without modifications, the edge-matching errors will occur near the edge of two zones. Therefore, it's required to eliminate separate zones of national plane coordinates system suitable far navigable digital map, we choose TM projection that is used at national base map but changed the location and the scale distortion of antral meridian.

  • PDF

The National Grid Systems for Digital Mapping and GIS/LIS (GIS/LIS와 수치지도용 국가평면좌표계에 관한 연구)

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.2
    • /
    • pp.299-309
    • /
    • 1998
  • The national coordinate system is an essential component for a geographic/land information system, since it provides the spatial reference for expressing position information. The national mapping of Korea has been based on 3-different meridians on the Gauss-Schreiber projection in year 1910s, later this was changed to the Gauss-Kruger projection. Existing map coordinate systems maintaining the national land survey project on 1910s, have some structural shortcomings of unknown computational procedures and projection methods. In this paper, the problems of the map coordinates usage and of longitudes origin shift(10.405") and their solutions are investigated. Also, this study discusses the issues involved in choosing coordinate system for digital mapping and their applications as a basis for spatial data management. The foreign country's coordinate systems are reviewed and the elements to realize a new unified grid coordinate system is proposed. The Transverse Mercator projection with a central meridian of $127^\circ\;30'$, scale factor 0.9996, and GRS80 ellipsoid, is selected in Korean peninsula.sula.

  • PDF

Three-Dimensional Vibration Analysis of Thick Shells of Revolution (두꺼운 축대칭 회전쉘의 3차원적 진동해석)

  • 강재훈;양근혁;장경호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.399-407
    • /
    • 2002
  • A three-dimensional method of analysis is presented for determining the free vibration frequencies and mode shapes of hollow bodies of revolution (i.e., thick shells), not limited to straight line generators or constant thickness. The middle surface of the shell may have arbitrary curvatures, and the wall thickness may vary arbitrarily. Displacement components$U_\Phi, U_z, U_\theta$ in the meridional, normal and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in$\theta$, and algebraic polynomials in the$\Phi$and z directions. Potential(strain) and kinetic energies of the entire body are formulated, and upper bound values of the frequencies are obtained by minimizing the frequencies. As the degrees of the polynomials are increased, frequencies converge to the exact values. Novel numerical results are presented for two types of thick conical shells and thick spherical shell segments having linear thickness variations. Convergence to four digit exactitude is demonstrated for the first five frequencies of both types of shells. The method is applicable to thin shells, as well as thick and very thick ones.