• Title/Summary/Keyword: 중심 객체

Search Result 652, Processing Time 0.023 seconds

Automatic center-located object segmentation algorithm (자동으로 영상 중심에 위치한 객체를 분할하는 알고리즘)

  • Kim, Kyumok;Jung, Seung-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.735-736
    • /
    • 2016
  • 본 논문에서는 웹캠을 이용하여 사용자가 추출하고자 하는 객체를 영상으로부터 추출하는 시스템을 제안한다. 영상의 중심에 위치한 Super-pixel을 표시 (Seed) 정보로 이용하여 영상에서 중심에 위치하고 있는 객체를 추출하는 방식을 제시한다.

Assocate Object Extraction Using personalized user Learning (개인화된 사용자 학습을 위한 연관 객체 추출 설계 및 구현)

  • 유수경;김교정
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.636-639
    • /
    • 2004
  • 본 논문은 웹 도큐먼트를 기반으로 사용자에게 의미 있는 정보를 찾아주기 위한 연관 객체 추출 기법인 PMPL(Personalized Multi-Strategey Pattern Loaming) 시스템을 제안하고자 한다. PMPL 모듈은 인터넷의 정보를 여과하여 필터링하고, 사용자 개인화의 키워드를 중심으로 연관된 객체를 추출한다. 이때 연관된 객체 추출 시 대용량 데이터에서 시간적, 공간적면에서 효율적인 연관 탐색 기법인 Fp-Tree와 Fp-Growth 알고리즘을 적용시켰으며, 연관규칙 탐색을 보완하기 위해 가중치 기법인 만유인력 기법을 적용시켰다. PMPL 시스템을 실행한 결과 개인화된 사용자 중심어 기초로 기존의 단일 학습 기법에 비해 더 많은 의미 있는 연관 지식을 추출한 결과가 보였다.

  • PDF

Motion-Estimated Active Rays-Based Fast Moving Object Tracking (움직임 추정 능동 방사선 기반 고속 객체 추적)

  • Ra Jeong-Jung;Seo Kyung-Seok;Choi Hung-Moon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.3 s.303
    • /
    • pp.15-22
    • /
    • 2005
  • This paper proposed a object tracking algorithm which can track contour of fast moving object through motion estimation. Since the proposed tracking algorithm is based on the radial representation, the motion estimation of object can be accomplished at the center of object with the low computation complexity. The motion estimation of object makes it possible to track object which move fast more than distance from center point to contour point for each frame. In addition, by introducing both gradient image and difference image into energy functions in the process of energy convergence, object tracking is more robust to the complex background. The results of experiment show that the proposed algorithm can track fast moving object in real-time and is robust under the complex background.

A Study on the Method and Tool Development for Extracting Objects from Procedure-oriented System (절차중심 시스템으로부터 객체추출 방법 및 도구개발에 관한 연구)

  • Kim, Jung-Jong;Son, Chang-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.3
    • /
    • pp.649-661
    • /
    • 1998
  • If there is redeveloping into the system applying the object-oriented paradigm, productivity Improvement of software through reuse would be accomplished and maintenance cost be reduced. When a procedure-oriented system is transformed to a type applying the object-oriented paradigm, various techniques are studied to extract objects from source code automatically or semi-automatically. However, it is not easy to extract conceptuat objects when those techniques are applied, This problem entails another problem which drops the conceptual integrity of the extracted objects. In this paper, we suggest an object extraction method and tool development to resolve the problem occurring at the time when thc pr"~r"m, dcveloped through procedure-oriented is transformed to an object-oriented system. The suggested method allow to extract the desired objects using object modeling for various application domains of the real world given source code and design recovery information. During the extraction process, functionality and global variables of the source code as well as its intcrface arc rigorously analyzed. This process can enhance the conceptual integrity of the objects and make easy to construct class hierarchies.

  • PDF

Similar Shape Matching Technique Using Interest Points (우세점을 이용한 유사한 모양 매칭 기법)

  • 김선규;엄기현
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.477-482
    • /
    • 2001
  • 이미지 데이터베이스에서 특성 객체를 가지고 있는 이미지를 효율적으로 검색하는 각 객체의 모양 특징을 질의 이미지의 질의 객체의 특징과 비교해야 한다. 올바른 모양 비교 기준은 사람이 보기에 같거나 유사하다고 판단하는 방법을 기준으로 삼는다. 본 논문에서는 질의 객체를 가진 이미지의 유사 검색에서 모양 비교의 정확도를 높이기 위한 매칭 기법을 제안한다. 이를 위해 질의 객체와 대상 객체에 비교를 시작할 근사한 우세점을 찾고 올바른 모양 비교를 위한 매칭 알고리즘을 제안한다. 또한 질의 중심의 유사도를 비교하기 위해 유사함수를 설정한다. 유사성 검색을 위해 사용되는 객체의 모양 특징은 객체의 윤곽선상의 점들 중 결정된 지역 특징을 지닌 (거리 ${\gamma}$, 각도$\theta$)의 우세점 집합으로 표현한다.

  • PDF

A Parallel Task Oriented Memory Manager for Dynamic Objects (동적 객체에 대한 병렬 타스크 중심의 메모리 관리기)

  • Kim, Eun-Jeong;Bae, Jong-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.5
    • /
    • pp.1391-1400
    • /
    • 1997
  • 공유 메모리 다중 프로세서상에서 많은 동적 객체를 생성하는 언어가 실행될 때, 동적 객체에 대한 메모리 관리 알고리즘은 프로그램의 실행 속도에 큰 영향을 미친다. 본 논문에서는 이러한 환경에서 프로그램의 성능을 향상 시킬 수 있는 새로운 메모리 관리 알고리즘을 제안한다. 이를 위해 힘 영역의 할당 및 회수 작업을 병렬 타스크 중심으로 행한다. 또한 동적 객체를 병렬 타스크사이에 공유 되는 객체(shared data) 와 비공유 객체(mon-shared data)로 구분하고, 힘 영역을 공동 영역과 전용 영역으로 분리 한다. 이는 병렬 타스크가 동적으로 스케줄링되는 것을 자유롭게 하고 창조 지역성 을 높이는 효과가 있으며, 전용 영역에 대한 메모리 재사용으로 인하여 볼용 셀수집기의 수행 횟수를 줄일 수 있다.

  • PDF

Dominant Color Based Image Retrieval using Saliency Map (Saliency Map을 이용한 대표 색상 기반의 영상 검색)

  • An, Jae-Hyun;Lee, Sang-Hwa;Cho, Nam-Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.213-216
    • /
    • 2013
  • 본 논문에서는 객체 위주의 컬러 영상 검색을 위하여 영상의 saliency map을 이용해 객체 중심의 영상을 생성하고, 객체와 그 주변 영역에서의 대표 색상이 가지는 통계적 특성과 공간적 분포 정보를 이용하는 방법을 제안한다. 먼저, 영상의 saliency map을 이진화하여 영상을 객체/배경으로 분할하고 객체를 중심으로 객체/배경의 비율이 일정한 일정 크기의 영상을 생성한다. 생성된 영상에서 대표 색상을 추출하고, 각 색상이 영상에서 어떻게 분포하는가를 나타내는 이진 공간분포 지도를 형성한다. 그 후 영상 간의 대표 색상마다 이진 공간분포의 차이를 비교함으로써, 색상의 통계적 특성과 공간적 분포가 동시에 반영된 특징으로 영상을 검색한다. 본 논문에서 제안한 saliency map을 이용한 대표 색상 기반의 영상 검색 기법은 기존의 대표 색상 기반의 영상 검색보다 우수한 성능을 보여준다.

  • PDF

Real-time Position Tracking of Virtual Object using Artificial Landmark (인위적인 랜드마크를 이용한 실시간 가상객체 위치변화 추적)

  • Chung, Hae-Ra;Choi, Yoo-Joo;Kim, Myoung-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04a
    • /
    • pp.135-138
    • /
    • 2001
  • 증강현실 시스템을 구축하는데 있어 실시간 가상객체 위치 추적은 실세계와 가상객체를 정확하고 깊이감 있게 정합하고, 실세계 움직임에 따른 가상객체 위치변화 추적에 중요하다. 따라서 실시간 카메라 입력영상으로부터 가상객체의 위치를 추적하는데 있어 정확성과 함께 빠른 수행시간이 요구된다. 본 논문에서는 HMD(Head Mounted Display)장비에 장착된 두 개의 카메라로부터 관찰자의 시점 이동에 따른 가상객체 정합위치 정보를 입력받아 그 위치를 정확하게 인식하고 빠르게 추적하기 위하여 인위적인 랜드마크 형태를 정의하였으며, 실시간 입력영상으로부터 랜드마크 중심점 위치를 실시간으로 추적하기 위해 일정시간 간격마다 입력받은 첫 영상으로부터 얻은 랜드마크 영역 정보를 이용하여 중심점의 위치를 추적함으로써 수행시간을 줄이고자 하였다.

  • PDF

Automatic Attention Object Extraction Using Feature Maps (특징 지도를 이용한 자동적인 중심 객체 추출)

  • Park Ki-Tae;Kim Jong-Hyeok;Moon Young-Shik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.370-372
    • /
    • 2006
  • 본 논문에서 제안하는 방법은 영상에서 중심 객체를 추출하기 위해 에지와 색상 정보에서 추출한 특집 지도와 배경의 영향을 줄이기 위친 창조 지도(reference map)를 제안한 것이 특징이다. 특징 지도는 다른 영역과 현저하게 구분되는 영역을 검출하기 위해서 영상의 특징 값(feature)들을 이용해서 구성한 영상이라고 할 수 있다. 그리고 창조 지도는 배경의 영향을 최소화하면서, 객체가 존재할 확률이 높은 부분을 나타내는 지도이다. 제안하는 방법은 밝기 차 정보를 가지고 있는 에지와 YCbCr 컬러모델과 HSV 컬러모델의 색상 성분을 특징 값으로 사용한다. 이들 특징 값을 이용해서 특징 지도를 구성하는 방법으로 영상 내 색상 차에 의해서 나타나는 경계부분을 구하는 방법을 사용한다. 이 방법을 사용하여 에지 지도와 두 개의 색상 지도의 3가지 특징 지도를 생성한다. 다음으로, 영상 배경의 영향을 줄이기 위해 참조 지도를 구한다. 구해진 참조 지도와 특징 지도들을 이용해서 결합 지도(combination map)를 생성한다. 결함 지도로부터 다각형의 객체 후보 영역을 구하고, 객체 후보 영역에 영상분할을 적용하여 중심 객체를 추출한다. 실험에 사용된 영상들은 Corel DB를 사용하였으며, 실험결과로써 precision은 84.3%, recall은 81.3%의 성능을 보인다.

  • PDF

Real-Time Loitering Detection using Object Feature (객체 특징을 이용한 실시간 배회행위 검출)

  • Kim, Jin Su;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.93-98
    • /
    • 2016
  • The literal meaning of loitering is "to lingering aimlessly or as if aimless in or about a place". And most criminals show this kind of act before they actually commit crime. Therefore, detecting this kind of loitering can effectively prevent a variety of crime. In this paper, we propose a loitering-detection algorithm using the Raspberry Pi. Proposed algorithm uses an adaptive difference image to detect moving objects and morphology opening operation to enhance the accuracy of detection. The loitering- behavior is being detected by using the center of gravity of the object to see the changes of angle; and pixel movement distance to determine the height of the object. When the loitering-behavior is detected, it outputs the alarm to tell the users by using the Raspberry Pi.