• Title/Summary/Keyword: 중심 객체

Search Result 652, Processing Time 0.023 seconds

Extraction of a Central Object in a Color Image Based on Significant Colors (특이 칼라에 기반한 칼라 영상에서의 중심 객체 추출)

  • SungYoung Kim;Eunkyung Lim;MinHwan Kim
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.648-657
    • /
    • 2004
  • A method of extracting central objects in color images without any prior-knowledge is proposed in this paper, which uses basically information of significant color distribution. A central object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. Significant colors in an image are first defined as the colors that are distributed more densely around center of the image than near borders. Then core object regions (CORs) are selected as the regions a lot of pixels of which have the significant colors. Finally, the adjacent regions to the CORs are iteratively merged if they are similar to the CORs but not to the background regions in color distribution. The merging result is accepted as the central object that may include differently color-characterized regions and/or two or more objects of interest. Usefulness of the significant colors in extracting the central object was verified through experiments on several kinds of test images. We expect that central objects shall be used usefully in image retrieval applications.

  • PDF

A Study on Extraction of Central Objects in Color Images (칼라 영상에서의 중심 객체 추출에 관한 연구)

  • 김성영;박창민;권규복;김민환
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.616-624
    • /
    • 2002
  • An extraction method of central objects in the color images is proposed, in this paper. A central object is defined as a comparatively consist of the central object in the image. First of all. an input image and its decreased resolution images are segmented. Segmented regions are classified as the outer or the inner region. The outer region is adjacent regions are included by a same region in the decreased resolution image. Then core object regions and core background regions are selected from the inner region and the outer region respectively. Core object regions are the representative regions for the object and are selected by using the information about the information about the region size and location. Each inner regions is classified into foreground or background regions by comparing values of a color histogram intersection of the inner region against the core object region and the core background regions. The core object region and foreground regions consist of the central object in the image.

  • PDF

A Study on A Method for Abstracting Object Patterns Using Role Modeling (역할 모델링을 이용한 객체 패턴의 추상화 방법)

  • 김정종;송호영;박운재;송의철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.7-9
    • /
    • 2003
  • 대부분의 객체지향 방법론은 객체를 중심으로 한 객체 모델링을 바탕으로 소프트웨어를 개발한다. 물론, 객체 모델링 방법은 여러 가지 장점을 가지고 있지만 복잡한 문제를 가진 대규모의 시스템에는 적합하지 않다. 따라서, 이런 복잡한 대규모 시스템을 객체의 패턴에 따라 간단한 모델로 분할할 필요성이 있으며 이를 위하여 역할 모델링 방법이 제안되었다. 본 논문은 객체의 패턴들을 추상화하고 복잡한 대규모 시스템을 관계의 분리를 통하여 간단한 모델로 생성할 수 있도록 객체 중심이 아닌 역할을 중심으로 한 역할 모델링 방법을 연구하였다.

  • PDF

Image Retrieval based on Central Objects in Color Images (중심 객체 기반의 영상 검색 기술)

  • 권선미;김성영;김민환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.145-148
    • /
    • 2002
  • 우리가 원하는 고수준의 검색 개념을 영상에서의 저수준 특징들을 조합하여 표현하는 데는 한계가 있다. 한편, 우리의 검색 개념은 주로 영상에 포함된 객체 단위로 형성되는 것이 일반적이다. 본 논문에서는 영상의 중심 부근에 비교적 큰 크기로 정의되는 중심 객체 및 중심 객체주변의 배경 영역을 추출하여 검색에 활용함으로써, 인간의 검색 의지를 최대한 정확하게 반영할 수 있는 하나의 방법을 제안한다. 중심 객체와 배경 영역은 영상분할 및 영역병합 결과에서 영상의 중앙 및 모서리에 존재하는 영역을 선정하여 칼라 유사도를 기준으로 영역확장을 통해 구한다. 검색은 단계적으로 할 수 있도록 하였는데, 먼저 사용자의 키워드에 의한 검색이 가능하도록 하였으며, 검색 결과는 그룹핑에 의한 대표영상을 보여 준 후 사용자가 원하는 영상을 선택적으로 얻을 수 있도록 하였다. 아울러, 하나 이상의 영상에서 추출된 객체와 배경을 조합하여 재검색할 수 있도록 함으로써 검색 성능을 높이고자 하였다. 한편, 자동 추출된 객체를 이용하여 사용자가 객체 영역을 지정하기 위해 개입하는 번거로움을 줄이면서도 사용자가 영역을 직접 선택한 경우와 비슷한 결과를 얻을 수 있도록 하였다.

  • PDF

Moving Object Tracking using Particle Filter and Difference Image (파티클 필터와 차영상을 이용한 이동 객체 추적)

  • Kim, Hyo Yeon;Kim, Kisang;Choi, Hyung-Il
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1461-1463
    • /
    • 2015
  • 본 논문에서는 이동 객체를 추적하기 위해 HSI 색상 모델 기반으로 하는 파티클 필터를 이용하고, 차영상을 통해 추적하고자 하는 객체의 중심점을 보완하는 방법을 제안한다. 색상 모델 기반 파티클 필터로 이동 객체를 추적했을 때, 객체의 색 혼합도의 문제로 객체의 중심과 파티클들의 분포에 대한 정확성이 떨어져 추적의 어려움이 있다. 이 문제를 해결하기 위해 각 프레임마다 차영상을 만들어 이동객체의 중심점을 찾고, 파티클 필터로 추적한 중심점과 비교하여 객체의 중심점을 보완해 추적에 대한 정확성을 높일 수 있다.

An Instance Segmentation using Object Center Masks (오브젝트 중심점-마스크를 사용한 instance segmentation)

  • Lee, Jong Hyeok;Kim, Hyong Suk
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.9-15
    • /
    • 2020
  • In this paper, we propose a network model composed of Multi path Encoder-Decoder branches that can recognize each instance from the image. The network has two branches, Dot branch and Segmentation branch for finding the center point of each instance and for recognizing area of the instance, respectively. In the experiment, the CVPPP dataset was studied to distinguish leaves from each other, and the center point detection branch(Dot branch) found the center points of each leaf, and the object segmentation branch(Segmentation branch) finally predicted the pixel area of each leaf corresponding to each center point. In the existing segmentation methods, there were problems of finding various sizes and positions of anchor boxes (N > 1k) for checking objects. Also, there were difficulties of estimating the number of undefined instances per image. In the proposed network, an effective method finding instances based on their center points is proposed.

Image Classification Into Object/Non-object Classes for Content-based Image Retrieval (내용기반 영상검색을 위한 객체 및 비객체 영상의 분류 방법)

  • 박소정;김성영;김민환
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2004.05a
    • /
    • pp.187-190
    • /
    • 2004
  • 본 논문에서는 영상을 자동적으로 객체와 비객체 영상으로 분류하는 방법을 제안한다. 객체 영상은 객체를 포함하는 영상이다. 객체는 영상의 중심 부근에 위치하고 주변 영역과는 상이한 칼라 분포를 가지는 영역들로 정의한다 영상 분류를 위해 객체의 특징에 기반하여 세 가지 기준을 정의한다. 첫 번째 기준인 중심 영역의 특이성은 중심영역과 주변 영역간의 칼라 분포의 차이를 통해 계산된다. 두 번째 기준은 영상 내의 특이 픽셀의 분산이다 특이 픽셀은 영상의 주변영역보다 중심 부근에서 더욱 빈번하게 나타나는 상호 인접한 픽셀들의 칼라 쌍에 의해 정의된다. 마지막 기준은 객체의 핵심 영역 경계에서의 경계 강도이다. 영상을 분류하기 위해서 신경 회로망 학습을 통해서 세 가지 기준들을 통합하도록 한다. 900개의 영상들에 대해 실헝한 결과 84.2%의 분류 정확도를 얻었다.

  • PDF

A KB/DB Coupling Methodology based on the Object-Oriented Entity Aspect Model (객체 중심 측면 모델에 의한 KB/DB 통합 방법론)

  • 오선영;백두권
    • The Journal of Information Technology and Database
    • /
    • v.1 no.2
    • /
    • pp.3-24
    • /
    • 1994
  • 기존의 데이타 모델 및 설계 방법론들은 실세계의 데이타 객체에 대해 고정된 한 측면의 모델 표현만을 허용하기 때문에 여러 측면으로 관측이 가능한 실세계 객체들의 표현에 어려움을 갖는다. 제시한 객체 중심 측면 모델(OOAM : Object-Oriented Entity Aspect Model)은 실세계의 각 객체에 대해 다수의 측면 표현을 가능하게 한 객체 중심의 데이타 모델로 데이타와 지식 표현에 유용한 모델이다. 데이타베이스 시스템과 지식베이스 시스템 중 어느 하나의 시스템이 다른 시스템의 특징을 빌리거나 통합할 수 있다면 두 시스템에게 서로 이득이 될 수 있다. 이러한 KB/DB(Knowledge Base/Data Base)의 통합은 최근에 객체 지향 개념과 연역 개념에 의해 연구가 활발히 진행되고 있다. 본 논문에서는 객체의 측면 개념을 제공하는 OOAM의 기본 개념을 보여주고 OOAM에 의해 구축되는 데이타베이스 스키마의 시맨틱을 분석하고 서술하기 위해 OOAM을 형식적으로 정의하였다. 그리고 KB/DB 통합에 관련된 연구들을 분석하고 데이타베이스에 관련된 지식의 종류를 서술한 후 OOAM을 사용하여 KB/DB 통합을 위한 지식베이스와 데이타베이스의 개발 방법론을 제시하였다.

  • PDF

Tracking Multiple Objects Using Appearance based Object Segmentation (외형정보 기반의 객체 분할을 이용한 다중 객체 추적)

  • Kim, Eun-Ju;Kim, Young-Ju
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.10a
    • /
    • pp.751-754
    • /
    • 2001
  • 본 논문에서는 외형 정보 기반의 객체 정보 분할을 이용한 다중객체 추적을 다룬다. 일반적인 다중객체 추적 시스템은 움직임이 탐지된 다중 객체에 대한 외형(appearance) 정보를 이용하여 비강체를 정의하고, 객체의 일부 특징점이나 무게 중심점을 이용한 추적을 통해 객체간의 중첩(occlusion)이나 객체 분리(split) 등의 문제에 초점을 맞춘다. 무게 중심점 등을 이용한 추적은 장시간 추적하는 경우, 즉 움직임 방향 전환이 발생하는 경우에는 정확하고 매끄러운 추적이 불가능하다. 본 논문에서는 이러한 문제를 해결하기 위해 어파인 구조를 이용한 개별 객체 추적 기법을 적용하되, 객체에 대한 외형 정보를 바탕으로 객체 분리 및 객체별 어파인 구조 변환을 감지하여 정확하고 매끄럽게 다중 객체를 추적하는 알고리즘을 제안하고 성능을 분석한다.

  • PDF

Object/Non-object Image Classification Based on the Detection of Objects of Interest (관심 객체 검출에 기반한 객체 및 비객체 영상 분류 기법)

  • Kim Sung-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.25-33
    • /
    • 2006
  • We propose a method that automatically classifies the images into the object and non-object images. An object image is the image with object(s). An object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. We define four measures based on the characteristics of an object to classify the images. The center significance is calculated from the difference in color distribution between the center area and its surrounding region. Second measure is the variance of significantly correlated colors in the image plane. Significantly correlated colors are first defined as the colors of two adjacent pixels that appear more frequently around center of an image rather than at the background of the image. Third one is edge strength at the boundary of candidate for the object. By the way, it is computationally expensive to extract third value because central objects are extracted. So, we define fourth measure which is similar with third measure in characteristic. Fourth one can be calculated more fast but show less accuracy than third one. To classify the images we combine each measure by training the neural network and SYM. We compare classification accuracies of these two classifiers.

  • PDF