A method of extracting central objects in color images without any prior-knowledge is proposed in this paper, which uses basically information of significant color distribution. A central object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. Significant colors in an image are first defined as the colors that are distributed more densely around center of the image than near borders. Then core object regions (CORs) are selected as the regions a lot of pixels of which have the significant colors. Finally, the adjacent regions to the CORs are iteratively merged if they are similar to the CORs but not to the background regions in color distribution. The merging result is accepted as the central object that may include differently color-characterized regions and/or two or more objects of interest. Usefulness of the significant colors in extracting the central object was verified through experiments on several kinds of test images. We expect that central objects shall be used usefully in image retrieval applications.
An extraction method of central objects in the color images is proposed, in this paper. A central object is defined as a comparatively consist of the central object in the image. First of all. an input image and its decreased resolution images are segmented. Segmented regions are classified as the outer or the inner region. The outer region is adjacent regions are included by a same region in the decreased resolution image. Then core object regions and core background regions are selected from the inner region and the outer region respectively. Core object regions are the representative regions for the object and are selected by using the information about the information about the region size and location. Each inner regions is classified into foreground or background regions by comparing values of a color histogram intersection of the inner region against the core object region and the core background regions. The core object region and foreground regions consist of the central object in the image.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.7-9
/
2003
대부분의 객체지향 방법론은 객체를 중심으로 한 객체 모델링을 바탕으로 소프트웨어를 개발한다. 물론, 객체 모델링 방법은 여러 가지 장점을 가지고 있지만 복잡한 문제를 가진 대규모의 시스템에는 적합하지 않다. 따라서, 이런 복잡한 대규모 시스템을 객체의 패턴에 따라 간단한 모델로 분할할 필요성이 있으며 이를 위하여 역할 모델링 방법이 제안되었다. 본 논문은 객체의 패턴들을 추상화하고 복잡한 대규모 시스템을 관계의 분리를 통하여 간단한 모델로 생성할 수 있도록 객체 중심이 아닌 역할을 중심으로 한 역할 모델링 방법을 연구하였다.
Proceedings of the Korea Multimedia Society Conference
/
2002.11b
/
pp.145-148
/
2002
우리가 원하는 고수준의 검색 개념을 영상에서의 저수준 특징들을 조합하여 표현하는 데는 한계가 있다. 한편, 우리의 검색 개념은 주로 영상에 포함된 객체 단위로 형성되는 것이 일반적이다. 본 논문에서는 영상의 중심 부근에 비교적 큰 크기로 정의되는 중심 객체 및 중심 객체주변의 배경 영역을 추출하여 검색에 활용함으로써, 인간의 검색 의지를 최대한 정확하게 반영할 수 있는 하나의 방법을 제안한다. 중심 객체와 배경 영역은 영상분할 및 영역병합 결과에서 영상의 중앙 및 모서리에 존재하는 영역을 선정하여 칼라 유사도를 기준으로 영역확장을 통해 구한다. 검색은 단계적으로 할 수 있도록 하였는데, 먼저 사용자의 키워드에 의한 검색이 가능하도록 하였으며, 검색 결과는 그룹핑에 의한 대표영상을 보여 준 후 사용자가 원하는 영상을 선택적으로 얻을 수 있도록 하였다. 아울러, 하나 이상의 영상에서 추출된 객체와 배경을 조합하여 재검색할 수 있도록 함으로써 검색 성능을 높이고자 하였다. 한편, 자동 추출된 객체를 이용하여 사용자가 객체 영역을 지정하기 위해 개입하는 번거로움을 줄이면서도 사용자가 영역을 직접 선택한 경우와 비슷한 결과를 얻을 수 있도록 하였다.
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.1461-1463
/
2015
본 논문에서는 이동 객체를 추적하기 위해 HSI 색상 모델 기반으로 하는 파티클 필터를 이용하고, 차영상을 통해 추적하고자 하는 객체의 중심점을 보완하는 방법을 제안한다. 색상 모델 기반 파티클 필터로 이동 객체를 추적했을 때, 객체의 색 혼합도의 문제로 객체의 중심과 파티클들의 분포에 대한 정확성이 떨어져 추적의 어려움이 있다. 이 문제를 해결하기 위해 각 프레임마다 차영상을 만들어 이동객체의 중심점을 찾고, 파티클 필터로 추적한 중심점과 비교하여 객체의 중심점을 보완해 추적에 대한 정확성을 높일 수 있다.
In this paper, we propose a network model composed of Multi path Encoder-Decoder branches that can recognize each instance from the image. The network has two branches, Dot branch and Segmentation branch for finding the center point of each instance and for recognizing area of the instance, respectively. In the experiment, the CVPPP dataset was studied to distinguish leaves from each other, and the center point detection branch(Dot branch) found the center points of each leaf, and the object segmentation branch(Segmentation branch) finally predicted the pixel area of each leaf corresponding to each center point. In the existing segmentation methods, there were problems of finding various sizes and positions of anchor boxes (N > 1k) for checking objects. Also, there were difficulties of estimating the number of undefined instances per image. In the proposed network, an effective method finding instances based on their center points is proposed.
Proceedings of the Korea Multimedia Society Conference
/
2004.05a
/
pp.187-190
/
2004
본 논문에서는 영상을 자동적으로 객체와 비객체 영상으로 분류하는 방법을 제안한다. 객체 영상은 객체를 포함하는 영상이다. 객체는 영상의 중심 부근에 위치하고 주변 영역과는 상이한 칼라 분포를 가지는 영역들로 정의한다 영상 분류를 위해 객체의 특징에 기반하여 세 가지 기준을 정의한다. 첫 번째 기준인 중심 영역의 특이성은 중심영역과 주변 영역간의 칼라 분포의 차이를 통해 계산된다. 두 번째 기준은 영상 내의 특이 픽셀의 분산이다 특이 픽셀은 영상의 주변영역보다 중심 부근에서 더욱 빈번하게 나타나는 상호 인접한 픽셀들의 칼라 쌍에 의해 정의된다. 마지막 기준은 객체의 핵심 영역 경계에서의 경계 강도이다. 영상을 분류하기 위해서 신경 회로망 학습을 통해서 세 가지 기준들을 통합하도록 한다. 900개의 영상들에 대해 실헝한 결과 84.2%의 분류 정확도를 얻었다.
The Journal of Information Technology and Database
/
v.1
no.2
/
pp.3-24
/
1994
기존의 데이타 모델 및 설계 방법론들은 실세계의 데이타 객체에 대해 고정된 한 측면의 모델 표현만을 허용하기 때문에 여러 측면으로 관측이 가능한 실세계 객체들의 표현에 어려움을 갖는다. 제시한 객체 중심 측면 모델(OOAM : Object-Oriented Entity Aspect Model)은 실세계의 각 객체에 대해 다수의 측면 표현을 가능하게 한 객체 중심의 데이타 모델로 데이타와 지식 표현에 유용한 모델이다. 데이타베이스 시스템과 지식베이스 시스템 중 어느 하나의 시스템이 다른 시스템의 특징을 빌리거나 통합할 수 있다면 두 시스템에게 서로 이득이 될 수 있다. 이러한 KB/DB(Knowledge Base/Data Base)의 통합은 최근에 객체 지향 개념과 연역 개념에 의해 연구가 활발히 진행되고 있다. 본 논문에서는 객체의 측면 개념을 제공하는 OOAM의 기본 개념을 보여주고 OOAM에 의해 구축되는 데이타베이스 스키마의 시맨틱을 분석하고 서술하기 위해 OOAM을 형식적으로 정의하였다. 그리고 KB/DB 통합에 관련된 연구들을 분석하고 데이타베이스에 관련된 지식의 종류를 서술한 후 OOAM을 사용하여 KB/DB 통합을 위한 지식베이스와 데이타베이스의 개발 방법론을 제시하였다.
Proceedings of the Korea Information Processing Society Conference
/
2001.10a
/
pp.751-754
/
2001
본 논문에서는 외형 정보 기반의 객체 정보 분할을 이용한 다중객체 추적을 다룬다. 일반적인 다중객체 추적 시스템은 움직임이 탐지된 다중 객체에 대한 외형(appearance) 정보를 이용하여 비강체를 정의하고, 객체의 일부 특징점이나 무게 중심점을 이용한 추적을 통해 객체간의 중첩(occlusion)이나 객체 분리(split) 등의 문제에 초점을 맞춘다. 무게 중심점 등을 이용한 추적은 장시간 추적하는 경우, 즉 움직임 방향 전환이 발생하는 경우에는 정확하고 매끄러운 추적이 불가능하다. 본 논문에서는 이러한 문제를 해결하기 위해 어파인 구조를 이용한 개별 객체 추적 기법을 적용하되, 객체에 대한 외형 정보를 바탕으로 객체 분리 및 객체별 어파인 구조 변환을 감지하여 정확하고 매끄럽게 다중 객체를 추적하는 알고리즘을 제안하고 성능을 분석한다.
Journal of the Korea Society of Computer and Information
/
v.11
no.2
s.40
/
pp.25-33
/
2006
We propose a method that automatically classifies the images into the object and non-object images. An object image is the image with object(s). An object in an image is defined as a set of regions that lie around center of the image and have significant color distribution against the other surround (or background) regions. We define four measures based on the characteristics of an object to classify the images. The center significance is calculated from the difference in color distribution between the center area and its surrounding region. Second measure is the variance of significantly correlated colors in the image plane. Significantly correlated colors are first defined as the colors of two adjacent pixels that appear more frequently around center of an image rather than at the background of the image. Third one is edge strength at the boundary of candidate for the object. By the way, it is computationally expensive to extract third value because central objects are extracted. So, we define fourth measure which is similar with third measure in characteristic. Fourth one can be calculated more fast but show less accuracy than third one. To classify the images we combine each measure by training the neural network and SYM. We compare classification accuracies of these two classifiers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.