• Title/Summary/Keyword: 중심유동 난류

Search Result 42, Processing Time 0.022 seconds

Modeling of Turbulent Heat Transfer in an Axially Rotating Pipe Flow (축을 중심으로 회전하는 관유동에서 난류열전달의 모형화)

  • Shin, Jong-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.741-753
    • /
    • 2007
  • The elliptic conceptual second moment model for turbulent heat fluxes, which was proposed on the basis of elliptic-relaxation equation, was applied to calculate the turbulent heat transfer in an axially rotating pipe flow. The model was closely linked to the elliptic blending model which was used for the prediction of Reynolds stress. The effects of rotation on the turbulent characteristics including the mean velocity, the Reynolds stress tensor, the mean temperature and the turbulent heat flux vector were examined by the model. The numerical results by the present model were directly compared to the DNS as well as the experimental results to assess the performance of the model predictions and showed that the behaviors of the turbulent heat transfer in the axially rotating pipe flow were satisfactorily captured by the present models.

Centerline Turbulent Characteristics of an Axisymmetric Flow with the Swirl (소용돌이 성분이 있는 축대칭유동의 중심난류 특성)

  • 남경덕;한용운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2724-2737
    • /
    • 1994
  • The swirl effect on an axisymmetric turbulence has been investigated along its centerline by the hot wire anemometry. Flow facility to generate and conrol the swirl has been built by using the rotating honeycomb and grid. For the case of internal flows, as the strength of the swirl increases the flow tends to be locally isotropic by modifying the radial and the rotational components mainly. In comparison with those of the plain free jet, the decay of the centerline turbulences seems to be delayed substantially even with a slight swirl component.

Condensation Heat Transfer Coefficient in Horizontal Stratified Cocurrent Flow of Steam and Cold Water (물-증기 동방향 성층이상 유동에서의 응축 열전달 계수)

  • 김효정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.618-624
    • /
    • 1986
  • Some studies on direct-contact condensation in cocurrent stratified flow of steam and subcooled water were reviewed. Several approaches have been performed to develop the condensation heat transfer coefficient relationshipo. The local Nusselt number is correlated in terms of the local water Reynolds and Prandtl numbers as well as the steam Froude number. In addition, a turbulence-centered model, developed principally for gas absorption in several geometries, is modified by using calculated interfacial paramters for the turbulent velocity and length scales. These approaches result in a fairly good agreement with the data, whereas, the turbulence-centered model is here rexcommened since it is based on the turbulent properties which may be closely related to the condensation phenemena.

An Experimental Study on the Mixing Flow Structure of Turbulent Cross Flow with Respect to the Ratio of Mass Flow Rate (난류충돌유동의 질량유량비에 따른 혼합유동구조에 관한 실험적 연구)

  • 이대옥;노병준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2150-2158
    • /
    • 1992
  • This study was carried out to investigate the flow structure and mixing process of a cross mixing flow formed by two round jets with respect to the ratio of mass flow rate. This flow configuration is of great practical relevance in a variety of combustion systems, and the flow behaviour of a cross jet defends critically on the ratio of mass flow rate and the cross angle. The mass flow rate ratios of two different jets were controlled as 1.0, 0.8, 0.6, and 0.4, and the crossing angle of two round jets was fixed at 45 degree. The velocities issuing from jet nozzle with an exit diameter of 20mm were adjusted to 40m/s, 32m/s, 24m/s, and 16m/s, and the measurements have been conducted in the streamwise range of $1.1X_0$to $2.5X_0$ by an on-line measurement system consisted of a constant temperature type two channel hot-wire anemometry connected to a computer analyzing system. The original air flow was generated by a subsonic wind tunnel with reliable stabilities and uniform flows in the test section. For the analysis of the cross mixing flow structure in the downstream region after the cross point, the mean velocity profiles, the resultant velocity contours, and the three-dimensional profiles depending upon the mass flow rate ratio have been concentrately studied.

Numerical Simulation of Developing Turbulent Flow in a Circular Pipe of 180° Bend (원형 단면을 갖는 180° 굽은 곡관내 발달하는 난류유동에 관한 수치해석)

  • Myong Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.966-972
    • /
    • 2006
  • A numerical simulation is performed fur developing turbulent flow in a strongly curved 180 deg pipe and its downstream tangent by a new solution code(PowerCFD) which adopts an unstructured cell-centered method. The governing equations are discretized as the full elliptic from of the equations of motion. Three typical two-equation turbulence models of low-Reynolds-number form are used to approximate the turbulent stress field. Solutions fur both streamwise and circumferential velocity components are compared with the experimental data by Azzola et at.(1986). The ${\kappa}-{\omega}$ model by Wilcox(1988) is found to give better prediction performance than the other two. Predicted secondary velocities and streamwise velocity component contours at sequential longitudinal stations are also presented in order to enable a detailed description of the complete flow. It is also found that, in the bend both mean streamwise and secondary velocities never achieve a fully-developed state and the code is capable of producing very well the complex nature of steady flow in a strongly curved pipe.

Experimental Studies on Flow Characteristics and Thrust Vectoring of Controlled Axisymmetric Jets (원형분사제트 조절을 통한 유동특성 및 제트 벡터링의 효과 고찰)

  • 조형희;이창호;이영석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.33-45
    • /
    • 1997
  • Axisymmetric shear layers around a free jet is forced by co-flowing and counter-flowing secondary jets from/to an annular tube around the jet nozzle. The jet potential core extends far downstream with co-flowing secondary jets due to inhibited vortex developing and pairing. For counter-flowing cases, the axisymmetric shear layer around the jet transits from convective instability to absolute instability for velocity ratios R=1.3~l.65 for the uniform velocity jets. Consequently, the jet potential core length increases and the turbulence level in the jet core is reduced significantly. The jets are controlled better with extension collars attached to the outer nozzle exit because the annular secondary flow is guided well by the extension collars. For the vectoring of jet, the annular tube around the jet is divided in two parts and the only one part is used for suction. The half suction makes the different shear layer around the jet and vectoring the jet by Coanda effect. The vectoring and turbulent components are varied significantly by the suction ratio. The experiments are carried out to investigate the characteristics of forced free jets using flow visualization, velocity and turbulence measurements.

  • PDF

A Numerical Study of the 2-D Cold Flow for a Qubec City Stoker Incinerator (큐벡시 스토커 소각로 2차원 비반응 유동장 수치해석)

  • 박지영;송은영;장동순
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.268-275
    • /
    • 1993
  • A series of parametric investigations are performed in order to resolve the flow characteristic of a Quebec city stoker incinerator. The parameters considered in this study are five internal configurations of the Quebec city stoker itself and its modified ones, primary air velocity, the injection velocity and angle of the secondary air, and the reduction of the stoker exit area. A control-volume based finite-difference method by Patankar together with the power-law scheme is employed for discretization. The resolution of the pressure-velocity coupling is made by the use of SIMPLEC algorithm. The standard, two equation, k-$\varepsilon$ model is incorporated for the closure of turbulence. The size of recirculation region, turbulent viscosity, the mass fraction of the secondary air and pressure drop are calculated in order to analyze the characteristics of flow field. The results are physically acceptable and discussed in detail. The flow field of the Quebec city stoker shows the strong recirculation zone together with the high turbulence intensity over the upper part of the incinerator.

  • PDF

Study on the statistical turbulence characteristics of cross jets in the cylinder by on-line computer system (온라인 컴퓨터 시스템에 의한 실린더내 충돌분류의 통계학적 난류특성 연구)

  • 노병준;박종호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.876-891
    • /
    • 1988
  • This study was carried out to investigate the mixing flow of a turbulent cross jet in a cylindrical chamber. A study on the turbulent mixing flow of a cross jet at 45.deg. with respect to each other in the free atmospheric condition was conducted before this study and has given us some fundamental experimental results. Present data have been analyzed and compared with semi-empirical equations for a round and a plane jets. Interests on this kind of cross jets (flows) have been increasing during the past several years for the purpose of the analysis of mixing flows and their applications. In this study, a turbulent cross jet of air in a cylindrical chamber has been conducted and the turbulent characteristics in the mixing region have been analyzed experimentally. The experimental data were discussed by comparing with the semi-empirical equations of Hinze and Gortler. From the experimental curve, the semi-empirical equations of mean velocities and Reynolds stresses have been derived. Three dimensional data acquisitions and the statistical treatments of turbulence characteristics were carried out by on-line computer measurement system connected with the constant temperature type 2-channel hot-wire anemometer system.

A study on the change of turbulence structure in a diffuser (확대관의 난류구조 변동에 관한 연구)

  • Lee, Jang-Hwan;Han,Yong-Un
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.503-508
    • /
    • 1997
  • The change of the structure of homogeneous turbulence subject to irrotational strains has been studied in an anti-Morel type diffuser (center matched cubic contour) using the hot wire anemometry. It was observed that the profiles of mean velocities and turbulence velocities along the center line were stable at the entrance region but rapidly changed near the matching point. The wall induced turbulence at the entrance region grows fast and was diffused toward the center at downstream. It was also observed that the axial turbulence grows faster than the radial one in the middle region of the diffusing flow and that the diffusing process has the vortex compression mechanism due to the conservation of angular momentum. These phenomena are frequently observed at the initial flow region of the free jet.

Process of Hairpin Vortex Packet Generation in Channel Flows (채널 유동 내에서 헤어핀 보텍스 패킷의 형성 과정)

  • Kim, Kyoung-Youn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.839-847
    • /
    • 2012
  • Numerical simulations for channel flows with $Re_{\tau}$ = 180, 395 and 590 have been performed to investigate the hairpin packet formation process in wall-bounded turbulent flows. Using direct numerical simulation databases, the initial flow fields are given by the conditionally averaged flow field with the second quadrant event specified at the buffer layer. By tracking the initial vortex development, the change in the initial vortex to an ${\Omega}$-shaped vortex and th generation of a secondary hairpin vortex were found to occur with time scales based on the wall units. In addition, at the time when the initial vortex has grown to the channel center, the inclination angle of the hairpin vortex packet is approximately $12{\sim}14^{\circ}$, which is similar for all three Reynolds numbers. Finally, numerical simulations of the evolution of two adjacent hairpin vortices have been performed to examine the interaction between the adjacent vortex packets.