• Title/Summary/Keyword: 중성자 모니터

Search Result 15, Processing Time 0.022 seconds

중성자별 이중성 EXO 0331+530의 관측연구

  • Kim, Sun-Uk
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.114-114
    • /
    • 2010
  • 중성자별을 포함하는 이중성인 EXO 0331+350을 가시광선 및 자외선으로 관측하였다. EXO 0331+350은 전형적인 Be/X-선 이중성인 것처럼 보이지만 특이하게도 공전 주기상의 근일점 마다 매우 밝아지는 다른 Be/X-선 이중성들과는 확연히 다르게 밝아지는 시기가 매우 불규칙하다. 따라서 그 물리적인 기작을 연구하기 위해서는 오랜 기간의 모니터링이 필수적이다.

  • PDF

The development of conductive 10B thin film for neutron monitoring (중성자 모니터링을 위한 전도성 10B 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Jung, Yongju;Choi, Young-Hyun;Baek, Cheol-Ha;Moon, Myung-Kook
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.4
    • /
    • pp.199-205
    • /
    • 2014
  • In the field of neutron detections, $^3He$ gas, the so-called "the gold standard," is the most widely used material for neutron detections because of its high efficiency in neutron capturing. However, from variable causes since early 2009, $^3He$ is being depleted, which has maintained an upward pressure on its cost. For this reason, the demands for $^3He$ replacements are rising sharply. Research into neutron converting materials, which has not been used well due to a neutron detection efficiency lower than the efficiency of $^3He$, although it can be chosen for use in a neutron detector, has been highlighted again. $^{10}B$, which is one of the $^3He$ replacements, such as $BF_3$, $^6Li$, $^{10}B$, $Gd_2O_2S$, is being researched by various detector development groups owing to a number of advantages such as easy gamma-ray discrimination, non-toxicity, low cost, etc. One of the possible techniques for the detection is an indirect neutron detection method measuring secondary radiation generated by interactions between neutrons and $^{10}B$. Because of the mean free path of alpha particle from interactions that are very short in a solid material, the thickness of $^{10}B$ should be thin. Therefore, to increase the neutron detection efficiency, it is important to make a $^{10}B$ thin film. In this study, we fabricated a $^{10}B$ thin film that is about 60 um in thickness for neutron detection using well-known technology for the manufacturing of a thin electrode for use in lithium ion batteries. In addition, by performing simple physical tests on the conductivity, dispersion, adhesion, and flexibility, we confirmed that the physical characteristics of the fabricated $^{10}B$ thin film are good. Using the fabricated $^{10}B$ thin film, we made a proportional counter for neutron monitoring and measured the neutron pulse height spectrum at a neutron facility at KAERI. Furthermore, we calculated using the Monte Carlo simulation the change of neutron detection efficiency according to the number of thin film layers. In conclusion, we suggest a fabrication method of a $^{10}B$ thin film using the technology used in making a thin electrode of lithium ion batteries and made the $^{10}B$ thin film for neutron detection using suggested method.

Measurement of Energy Dependent Differential Neutron Capture Cross-section of Natural Sm by Using a Continuous Neutron Flux below (연속에너지 중성자에 대한 천연 Sm의 중성자 포획단면적 측정)

  • Yoon, Jungran
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.337-341
    • /
    • 2016
  • We measured the neutron capture cross-section of natural Sm(n,${\gamma}$) reaction in the energy regions from 0.003 to 10 eV. The 46-MeV electron linear accelerator of Research Reactor Institute, Kyoto University was used for generating a continuous neutron source. The neutron time-of-flight method was adopted for energy measurement. An assembly of BGO($Bi_4Ge_3O_{12}$) scintillators composed of 12 pieces of BGO crystals measured prompt gamma rays from Sm(n,${\gamma}$) reaction. The BGO assembly was located at a distance of $12.7{\pm}0.02m$ from the neutron source. In order to determine the neutron flux impinging on the Sm, the $^{10}B(n,{\alpha}{\gamma})^7Li$ standard cross-section were used. Natural Sm(n,${\gamma}$) reaction measurement result of the neutron capture cross-section was compared with the results of evaluation of the BROND-2.2 and the previous experimental data of J. C. Chou and V. N. Kononov.

Development of Neutron, Gamma ray, X-ray Radiation Measurement and Integrated Control System (중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템 개발)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.408-411
    • /
    • 2017
  • In this paper, we propose an integrated control system that measures neutrons, gamma ray, and x-ray. The proposed system is able to monitor and control the data measured and analyzed on the remote or network, and can monitor and control the status of each part of the system remotely without remote control. The proposed system consists of a gamma ray/x-ray sensor part, a neutron sensor part, a main control embedded system part, a dedicated display device and GUI part, and a remote UI part. The gamma ray/x-ray sensor part measures gamma ray and x-ray of low level by using NaI(Tl) scintillation detector. The neutron sensor part measures neutrons using Proportional Counter Detector(low-level neutron) and Ion Chamber Type Detector(high-level neutron). The main control embedded system part detects radiation, samples it in seconds, and converts it into radiation dose for accumulated pulse and current values. The dedicated display device and the GUI part output the radiation measurement result and the converted radiation amount and radiation amount measurement value and provide the user with the control condition setting and the calibration function for the detection part. The remote UI unit collects and stores the measured values and transmits them to the remote monitoring system. In order to evaluate the performance of the proposed system, the measurement uncertainty of the neutron detector was measured to less than ${\pm}8.2%$ and the gamma ray and x-ray detector had the uncertainty of less than 7.5%. It was confirmed that the normal operation was not less than ${\pm}15$ percent of the international standard.

Development of B4C Thin Films for Neutron Detection (스퍼터링 코팅기법을 이용한 중성자 검출용 B4C 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Cho, Sang-Jin;Choi, Young-Hyun;Park, Jong-Won;Moon, Myung Kook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.79-86
    • /
    • 2015
  • $^3He$ gas has been used for neutron monitors as the neutron converter owing to its advantages such as high sensitivity, good ${\gamma}$-discrimination capability, and long-term stability. However, $^3He$ is becoming more difficult to obtain in last few years due to a global shortage of $^3He$ gas. Accordingly, the cost of a neutron monitor using $^3He$ gas as a neutron converter is becoming more expensive. Demand on a neutron monitor using an alternative neutron conversion material is widely increased. $^{10}B$ has many advantages among various $^3He$ alternative materials, as a neutron converter. In order to develop a neutron converter using $^{10}B$ (actually $B_4C$), we calculated the optimal thickness of a neutron converter with a Monte Carlo simulation using MCNP6. In addition, a neutron converter was fabricated by the Ar sputtering method and the neutron signal detection efficiencies were measured with respect to various thicknesses of fabricated a neutron converter. Also, we developed a 2-dimensional multi-wire proportional chamber (MWPC) for neutron beam profile monitoring using the fabricated a neutron converter, and performed experiments for neutron response of the neutron monitor at the 30 MW research reactor HANARO at the Korea Atomic Energy Research Institute. The 2-dimensional MWPC with boron ($B_4C$) neutron converter was proved to be useful for neutron beam monitoring, and can be applied to other types of neutron imaging.

A Single Comparator Method Using Reactor Neutron and Its Errors (원자로 중성자를 이용한 단일 비교체법과 오차)

  • Nak Bae Kim;Keung Shik Park;Hae-Ill Bak
    • Nuclear Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.85-91
    • /
    • 1986
  • A single comparator method with its accuracy has been studied for determining multielement by reactor neutron activation analysis. Spectral index at the irradiation position of each sample was determined using two flux monitors of Au and Co, one of which was used as a single comparator. The uncertainties of nuclear data related to the method were investigated for 18 elements and the error of the analytical result due to the uncertainties of nuclear data related is found to be less than 6%. The analytical results of 4 USGS reference samples agree well within 15% deviation with the results evaluated by USGS.

  • PDF

영상 및 방사선 신호를 이용한 핵물질 감시시스템

  • 송대용;이상윤;하장호;고원일;김호동;이태훈
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.305-305
    • /
    • 2004
  • 핵물질을 취급하는 시설에서는 핵물질 안전조치 목적의 달성, 즉 핵물질의 군사적 전용 및 도난을 방지하기 위한 하나의 수단으로서 핵물질의 취급 및 이동을 감시하기 위한 감시시스템이 요구된다. 이 연구에서는 이러한 요구에 부응하기 위해 시설 내에서 핵물질이 이동 가능한 모든 경로에 중성자 모니터와 카메라 같은 감시 장비를 설치하고, 이들로부터 실시간으로 방사선 신호와 영상 데이터를 취득ㆍ분석하여 핵물질의 거동을 진단할 수 있는 핵물질 감시시스템을 개발하였다.(중략)

  • PDF