• Title/Summary/Keyword: 중복 유전자 알고리즘

Search Result 13, Processing Time 0.025 seconds

Removing Non-informative Features by Robust Feature Wrapping Method for Microarray Gene Expression Data (유전자 알고리즘과 Feature Wrapping을 통한 마이크로어레이 데이타 중복 특징 소거법)

  • Lee, Jae-Sung;Kim, Dae-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.8
    • /
    • pp.463-478
    • /
    • 2008
  • Due to the high dimensional problem, typically machine learning algorithms have relied on feature selection techniques in order to perform effective classification in microarray gene expression datasets. However, the large number of features compared to the number of samples makes the task of feature selection computationally inprohibitive and prone to errors. One of traditional feature selection approach was feature filtering; measuring one gene per one step. Then feature filtering was an univariate approach that cannot validate multivariate correlations. In this paper, we proposed a function for measuring both class separability and correlations. With this approach, we solved the problem related to feature filtering approach.

Video Sequence Segmentation using Distributed Genetic Algorithms (분산 유전자 알고리즘을 이용한 동영상 분할)

  • 황상원;김은이;김항준
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.317-320
    • /
    • 2000
  • 동영상 분할은 컴퓨터 비전 분야에서 중요한 단계로 많이 연구되고 있다 그러나 동영상 분할은 계산 복잡도에 의해 제약을 받는다. 이를 해결하기 위해, 본 논문은 분산 유전자 알고리즘에 기반한 계산 효율을 높일 수 있는 새로운 동영상 분할 방법을 제안한다. 일반적으로 동영상에서 연속한 두 프레임은 높은 상관관계를 가진다. 따라서, 한 프레임의 분할 결과는 이전 프레임의 분할 결과를 사용해서 연속적으로 얻어진다. 그리고 중복된 계산을 제거하기 위해 움직이는 객체에 대응되는 염색체만을 진화시킨다. 실험 결과는 제안한 방법의 효율성을 보여준다.

  • PDF

The Study on the Optimum Design of Acoustic Interference Model by Genetic Algorithm (유전자 알고리즘을 이용한 음향 간섭 모델 최적화 설계)

  • Lee, Jae-Hwan;Jang, Kang-Seok
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.18-23
    • /
    • 2003
  • The Objective of this research is to find the optimal design of the Noise Reduction Interference Model (NRIM) which is recently invented. Without optimization, the NRIM has been successful to reduce the urban noise induced by trains and automobiles. While it is used with the barrier on the road, there is a strong desire to reduce noise more. Yet the only remedy is to make the barrier higher with cost increase. Therefore, the optimal design is necessary to reduce noise while maintaining the barrier height. More efficient Genetic Algorithm is used to find the optimal shape of NRIM with the reduction of noise lever up to 15 dB. also BEM is used to verify the optimal design results.

  • PDF

Design and Implementation of Genetic Test-Sheet-Generating Algorithm Considering Uniformity of Difficulty (난이도 균일성을 고려한 유전자 알고리즘 기반 평가지 생성 시스템의 설계 및 구현)

  • Song, Bong-Gi;Woo, Chong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.912-922
    • /
    • 2007
  • Evaluation of distance teaming systems needs a method that maintains a consistent level of difficulty for each test. In this paper, we propose a new algorithm for test sheet generation based on genetic algorithm. Unlike the existing methods that difficulty of each test item is assigned by tutors, in the proposed method, that can be adjusted by the result of the previous tests and the average difficulty of test sheet can be consistently reserved. We propose the new genetic operators to prevent duplications of test items in a test sheet and apply the adjusted difficulty of each test item. The result of simulation shows that difficulty of the test sheet generated by proposed method can be more regular than the random method and the simulated annealing method.

  • PDF

Feature Selection by Genetic Algorithm and Information Theory (유전자 알고리즘과 정보이론을 이용한 속성선택)

  • Cho, Jae-Hoon;Lee, Dae-Jong;Song, Chang-Kyu;Kim, Yong-Sam;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.94-99
    • /
    • 2008
  • In the pattern classification problem, feature selection is an important technique to improve performance of the classifiers. Particularly, in the case of classifying with a large number of features or variables, the accuracy of the classifier can be improved by using the relevant feature subset to remove the irrelevant, redundant, or noisy data. In this paper we propose a feature selection method using genetic algorithm and information theory. Experimental results show that this method can achieve better performance for pattern recognition problems than conventional ones.

The Study on the Optimum Design of Acoustic Interference Model for Traffic Noise Reduction (교통소음저감을 위한 음향간섭모델의 최적화설계에 관한 연구)

  • 장강석;김영찬;김두훈;이재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.724-729
    • /
    • 2004
  • An experimental method to investigate the dynamic characteristics of buoys in extreme environmental condition is established. Because the buoy model requires a resonable size for accurate experiment, the test condition in model basin that satisfies the similarity law is hardly compatible with capability of test facilities. It is suggested that the linear wave component that is unable to satisfy similarity is separated with others‥‥‥

  • PDF

Association Rule Discovery for Sequence Analysis (서열 분석을 위한 연관 규칙 탐사)

  • 김정자;이도헌
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.91-93
    • /
    • 2001
  • 최근 지놈(Genome) 프로젝트를 통해 핵산, 단백질 서열 정보가 밝혀짐에 따라 분자 수준의 유전자 정보를 다루는 기법들이 활발히 연구되면서 방대한 서열 정보를 데이터 베이스화하고, 부족하기 위한 효과적인 도구와 컴퓨터 알고리즘의 개발을 필요로 하고 있다. 본 논문에서는 여러 단백질에 공통적으로 존재하는 서열 정보간에 존재하는 연관성을 탐사하기 위한 서열 연관 규칙 알고리즘을 제안한다. 원자 항목을 취급하였던 기존 알고리즘과는 달리 중복을 반영해야 하는 서열 데이터의 특성을 고려하여야 한다. 실험을 단백질 서열 데이터를 대상으로 수행하였다. 먼저 여러 서열에 빈발하게 발생하는 부 서열 집합을 찾고, 부 서열 집합들간에 존재하는 관련성을 탐사한다. 본 연구의 결과는 탐사된 규칙으로부터 다른 단백질의 구조와 기능을 예측할 수 있고, 이 정보는 필요로 하는 생물학적 분석을 방향을 제시할 것이다. 이는 생물학적 실험 대상의 후부조합을 최소화함으로써 많은 시간과 노력 비용을 절감할 수 있다.

  • PDF

An Allocation Methodology on Distributed Databases Using the Genetic Algorithmsplications (유전자 알고리즘을 이용한 분산 데이터베이스 할당 방법론)

  • 박성진;박화규;손주찬;박상봉;백두권
    • The Journal of Information Technology and Database
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • 분산 환경에서 데이터의 할당(allocation)는 중요한 설계 이슈이다. 데이터의 할당은 분산 데이터에 대한 비용(cost) 감소, 성능(performance) 및 가용성(availability) 향상 등의 이점을 극대화할 수 있도록 최적화되어야 한다. 기존 연구들의 대부분은 트랜잭션의 수행 비용을 최소화하는 방향으로만 최적화된 데이터 할당 결과를 제시하고 있다. 즉, 비용, 성능 및 가용성을 모두 함께 고려하는 연구는 아직까지 제시된 결과가 없으며 이는 복잡한 모델에 대한 적절한 최적화 기법이 없기 때문이다. 본 연구에서는 분산 데이터의 이점들인 비용, 성능 및 가용성 등의 다중측면을 동시에 고려함으로써 데이터 할당에 대한 파레토 최적해를 제공하는 DAMMA (Data Allocation Methodology considering Multiple Aspects) 방법론을 제안하였다. DAMMA 방법론은 데이터 분할 과정을 통하여 생성된 최적의 단편들을 분산 시스템의 운용 비용, 수행 성능, 가용성 등의 요소를 고려하여 각 물리적 사이트에 중복 할당하는 파레토 최적해들을 생성해낼 수 있는 설계 방법론이다.

  • PDF

The partial matching method for effective recognizing HLA entities (효과적인 HLA개체인식을 위한 부분매칭기법)

  • Chae, Jeong-Min;Jung, Young-Hee;Lee, Tae-Min;Chae, Ji-Eun;Oh, Heung-Bum;Jung, Soon-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.2
    • /
    • pp.83-94
    • /
    • 2011
  • In the biomedical domain, the longest matching method is frequently used for recognizing named entity written in the literature. This method uses a dictionary as a resource for named entity recognition. If there exist appropriated dictionary about target domain, the longest matching method has the advantage of being able to recognize the entities of target domain quickly and exactly. However, the longest matching method is difficult to recognize the enumerated named entities, because these entities are frequently expressed as being omitted some words. In order to resolve this problem, we propose the partial matching method using a dictionary. The proposed method makes several candidate entities on the assumption that the ellipses may be included. After that, the method selects the most valid one among candidate entities through the optimization algorithm. We tested the longest and partial matching method about HLA entities: HLA gene, antigen, and allele entities, which are frequently enumerated among biomedical entities. As preparing for named entity recognition, we built two new resource, extended dictionary and tag-based dictionary about HLA entities. And later, we performed the longest and partial matching method using each dictionary. According to our experiment result, the longest matching method was effective in recognizing HLA antigen entities, in which the ellipses are rare, and the partial matching method was effective in recognizing HLA gene and allele entities, in which the ellipses are frequent. Especially, the partial matching method had a high F-score 95.59% about HLA alleles.

  • PDF

An Optimal Reliability-Redundancy Allocation Problem by using Hybrid Parallel Genetic Algorithm (하이브리드 병렬 유전자 알고리즘을 이용한 최적 신뢰도-중복 할당 문제)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.147-155
    • /
    • 2010
  • Reliability allocation is defined as a problem of determination of the reliability for subsystems and components to achieve target system reliability. The determination of both optimal component reliability and the number of component redundancy allowing mixed components to maximize the system reliability under resource constraints is called reliability-redundancy allocation problem(RAP). The main objective of this study is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for reliability-redundancy allocation problem that decides both optimal component reliability and the number of component redundancy to maximize the system reliability under cost and weight constraints. The global optimal solutions of each example are obtained by using CPLEX 11.1. The component structure, reliability, cost, and weight were computed by using HPGA and compared the results of existing metaheuristic such as Genetic Algoritm(GA), Tabu Search(TS), Ant Colony Optimization(ACO), Immune Algorithm(IA) and also evaluated performance of HPGA. The result of suggested algorithm gives the same or better solutions when compared with existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improve solution through swap, 2-opt, and interchange processes. In order to calculate the improvement of reliability for existing studies and suggested algorithm, a maximum possible improvement(MPI) was applied in this study.