• Title/Summary/Keyword: 중력하중

Search Result 130, Processing Time 0.026 seconds

Case Studies for Anlayzing Effects of Outriggers on Gravity Load Managements (아웃리거의 중력하중 조절 효과 분석을 위한 사례연구)

  • Kang, Su-Min;Eom, Tae-Sung;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.255-266
    • /
    • 2010
  • In high-rise buildings, an outrigger system is frequently used as a resisting system for lateral loads. Since the outriggers tie exterior columns and an interior core, exterior columns can participate in the lateral load resisting system and the structural resistance capacity can be increased. However, the outriggers contribute for controlling gravity loads as well as lateral loads. The flows of gravity loads can be changed by the members of outriggers, for the purposes of transferring loads to mega-columns, distributing gravity loads equally among vertical members of columns, walls, or piles, minimizing differential settlements in a foundation system, and so on. In this study, by computational structural analyses of high-rise buildings over 100 floors, the effects of outriggers on controlling gravity loads are analyzed. Analyses for 3-dimensional models with or without outrigger members are performed, and then the gravity load distributions in columns and piles and foundation settlements are analyzed. Also, the effects of outriggers on gravity load controls during construction stages as well as after construction are included.

Implications of the effects of gravity load for earthquake resistant design of multistory building structurtes (고층건물의 내진설계에 미치는 중력하중의 영향)

  • 이동근;이석용
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.67-80
    • /
    • 1993
  • This paper presents the results of an analytical study to evaluate the inelastic seismic response characteristics of multistory building structures, the effects of gravity load on the seismic responses and its implications on the earthquake resistant design. Static analyses for incremental lateral force and nonlinear dynamic analyses for earthquake motions were performed to evaluate the seismic response of example multistory building structures. Most of considerations are placed on the distribution of inelastic responses over the height of the structure. When an earthquake occurs, bending moment demand is increased considerably from the top to the bottom of multistory structures, so that differences between bending moment demands and supplies are greater in lower floos of multistory structures. As a result, for building structures designed by the current earthquake resistant design procedure, inelastic deformations for earthquake ground motions do not distribute uniformly over the height of structures and those are induced mainly in bottom floors. In addition, gravity load considerded in design procedure tends to cause much larger damages in lower floors. From the point of view of seismic responses, gravity load affects the initial yield time of griders in earlier stage of strong earthquakes and results in different inelastic responses among the plastic hinges that form in the girders of a same floor. However, gravity load moments at beam ends are gradually reduced and finally fully relaxed after a structure experiences some inelastic excursions as a ground motion is getting stronger. Reduction of gravity load moment results in much increased structural damages in lower floors building structures. The implications of the effects of gravity load for seismic design of multistory building structures are to reduce the contributions of gravity load and to increased those of seismic load in determination of flexual strength for girders and columns.

  • PDF

Analytical Study on Effects of Gravity Load on Blast Resistance of Steel Compressive Members (강재압축재의 방폭성능에 대한 중력하중효과의 해석적 연구)

  • Lee, Kyungkoo;Lee, Moon Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.273-280
    • /
    • 2015
  • Equivalent Single-Degree-of-Freedom(SDOF) analysis, most used for blast-resistant design, does not consider the effects of gravity load on the performance evaluation of blast resistance of structural members. However, since there exists gravity load on columns and walls of structures, the blast resistance of structural members should be evaluated considering gravity load on them. In this paper, an approach to reflect the gravity load effects on the equivalent SDOF analysis for dynamic blast response of structural members is proposed. For this purpose, the parametric studies using finite element analysis were performed by varying maximum blast load, blast load duration, and gravity load with constant the resistance and natural period of a structural member. The finite element analysis results were compared with the equivalent SDOF analysis results and the blast response of the structure member was estimated by conducting finite element analyses for various gravity loads. Finally, a graphical solution for ductility of a structural member with the variables of blast load, gravity load and structural member properties was developed. The blast response of structural members under gravity load could be estimated reasonably and easily by using this graphical solution.

Design of Flat Plate Systems Using the Modified Equivalent Frame Method (수정된 등가골조법을 이용한 플랫플레이트 시스템의 설계)

  • Park, Young-Mi;Oh, Seung-Yong;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • In general, flat plate systems have been used as a gravity load resisting system (GLRS) in building. Thus, this system should be constructed with lateral force resisting system (LFRS) such as shear walls and brace frames. GLRS should retain the ability to undergo the lateral drift associated with the LFRS without loss of gravity load carrying capacity. And flat plate system can be designed LFRS as ordinary moment frame with the special details. Thus, flat plate system designed as GLRS or LFRS should be considered internal forces (e.g., unbalanced moments) and lateral deformation generated in vicinity of slab joints render the system more susceptible to punching shear. ACI 318 (2005) allows the direct design method, equivalent frame method under gravity loads and allows the finite-element models, effective beam width models, and equivalent frame models under lateral loads. These analysis methods can produce widely different result, and each has advantage and disadvantages. Thus, it is sometimes difficult for a designer to select an appropriate analysis method and interpret the results for design purposes. This study is to help designer selecting analysis method for flat plate system and to verify practicality of the modified equivalent frame method under lateral loads. This study compared internal force and drift obtained from frame methods with those obtained from finite element method under gravity and lateral loads. For this purposes, 7 story building is considered. Also, the accuracy of these models is verified by comparing analysis results using frame methods with published experimental results of NRC slab.

Redistribution of Negative Moments in Beams Subjected to Lateral Load (횡하중에 대한 휨재의 부모멘트 재분배)

  • Eom, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.731-740
    • /
    • 2011
  • Provisions for the redistribution of negative moments in KCI 2007 and ACI 318-08 use a method for continuous flexural members subjected to uniformly-distributed gravity load. Moment redistributions and plastic rotations in beams of reinforced concrete moment frames subjected to lateral load differ from those in continuous flexural members due to gravity load. In the present study, a quantitative relationship between the moment redistribution and plastic rotation is established for beams subjected to both lateral and gravity loads. Based on the relationship, a design method for the redistribution of negative moments is proposed based on a plastic rotation capacity. The percentage change in negative moments in the beam was defined as a function of the tensile strain of re-bars at the section of maximum negative moment, which is determined by a section analysis at an ultimate state using KCI 2007 and ACI 318-08. Span, reinforcement ratio, cracked section stiffness, and strain-hardening behavior substantially affected the moment redistribution. Design guidelines and examples for the redistribution of the factored negative moments determined by elastic theory for beams under lateral load are presented.

Feasibility Evaluation of CHS Diagrid Systems for Low/Mid-Rise Building Structure (원형강관 다이아그리드 시스템의 중저층 건축구조물 적용 타당성 평가)

  • Gam, Sam-Do;Kim, Tae-Jin;Kwak, Jin-I
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.84-87
    • /
    • 2009
  • 본 논문에서는 최근 초고층 건축물에 많이 활용되어지는 기둥-가새 시스템인 다이아그리드 시스템을 활용하여 중저층 건축물에 적용가능성을 평가하였다. 본 시스템은 튜브구조의 형태로 횡력에 대한 저항력이 우수하며 중력하중과 황하중을 기초와 지반에 안전하게 하중을 전달한다. 다이아그리드는 경사기둥과 보를 반복적으로 삼각형 형태로 배치되어 중력하중을 받을 경우 수직부재는 압축력을 보는 인장력을 받게 된다. 경사기둥과 보를 연결하는 접합부는 H-형강으로 설계 시 제작이 복잡하고 외관이 좋지 않다. 하지만 원형강관을 사용 할 경우 복합하지 않은 형태로 설계가 가능하고 외관이 우수하기 때문에 외부에 노출이 가능해진다. 또한 원형강관은 개방형 단면 부재에 비해 압축좌굴과 비틀림에 대한 성능 등이 우수하여 구조적인 성능이 우수하다. 원형강관을 이용하여 다이아그리드 시스템이 고층 건축물 뿐만 아니라 중저층 건축물에도 적용 타당성을 검토하였으며 원형강관 접합부 설계는 한계상태설계법이 사용 된 KBC2008(안)을 이용하여 설계하였다.

  • PDF

Seismic Performance of Gravity-Load Designed Post-Tensioned Flat Plate Frames (중력하중으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능)

  • Han, Sang-Whan;Park, Young-Mi;Rew, Youn-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.31-38
    • /
    • 2010
  • The purpose of this study is to evaluate the seismic performance of gravity-designed post tensioned (PT) flat plate frames with and without slab bottom reinforcement passing through the column. In low and moderate seismic regions, buildings are often designed considering only gravity loads. This study focuses on the seismic performance of gravity load designed PT flat plate frames. For this purpose, 3-, 6- and 9-story PT flat plate frames are designed considering only gravity loads. For reinforced concrete flat plate frames, continuous slab bottom reinforcement (integrity reinforcement) passing through the column should be placed to prevent progressive collapse; however, for the PT flat plate frames, the slab bottom reinforcement is often omitted since the requirement for the slab bottom reinforcement for PT flat plates is not clearly specified in ACI 318-08. This study evaluates the seismic performance of the model frames, which was evaluated by conducting nonlinear time history analyses. For conducting nonlinear time history analyses, six sets of ground motions are used as input ground motions, which represent two different hazard levels (return periods of 475 and 2475 years) and three different locations (Boston, Seattle, and L.A.). This study shows that gravity designed PT flat plate frames have some seismic resistance. In addition, the seismic performance of PT flat plate frames is significantly improved by the placement of slab bottom reinforcement passing through the column.

Test of SRC Column-to-Composite Beam Connection under Gravity Loading (중력하중을 받는 SRC기둥-합성보 접합부 실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Jang, Seong Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.441-452
    • /
    • 2014
  • In this paper, steel reinforced concrete(SRC) column and composite beam connections were statically tested under gravity loading. The composite beam consists of H-section and U-section members. Five full-scaled specimens were designed to investigate the effect of a number of parameters on behavior of connections such as H-section size, the presence of stud connector, the presence of stiffeners and top bars. In addition, structural performance of welded joint between the H-section and the U-section members is mainly discussed, with an emphasis on initial stiffness, strength, deformation capacity.

Characteristics of RC Exterior Joint Designed to Gravity Load (중력하중에 설계된 RC골조 외부접합부의 내력특성)

  • Lee, Young-Wook;Park, Hyung-Gweon;Choi, Duk-Beom;Chae, Ji-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.115-116
    • /
    • 2010
  • To research the fragility of exterior joints of RC frame building which are not designed to seismic design code, four T shaped beam-column subassemblies are designed and tested with displacement control until to reach 3.5% story drift. From the results, the non-seismic detailed specimen failed in exterior joint before to reach to 1.0% drift, which is far less than the recommendation value of FEMA 356 and their strengths are less than 0.85 times of the nominal flexural strength.

  • PDF

Derivation of Estimating Formulas for Seismic Strength of RC Frames Designed to Gravity Loads (중력하중에 대하여 설계된 RC 골조의 내진 저항력 추정식의 유도)

  • 이영욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • The seismic design regulations have not been applied to the low-rised buildings which are less than 6 stories in Korea. For these buildings which are designed only for gravity loads, theoretical formulas which can estimate the seismic strength of building are derived. The column hinge sway and beam hinge sway mechanism are assumed for the formulars. For the comparisons with the formulas, the results of push-over analyses of 3 and 4 storied buildings are used. It can be shown that the estimating formulas correspond well with the push-over analyses. And the seismic strength of building has a little relations with the number of bay and becomes larger as the building becomes lower. Also, as the ratio and strength of reinforcing steel increase, the seismic strength of building is increased.