• Title/Summary/Keyword: 중력전단비

Search Result 38, Processing Time 0.033 seconds

Seismic Performance of Reinforced Concrete Flat Plate Frames according to Gravity Shear Ratio (중력전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진 성능 평가)

  • HwangBo, Jin;Han, Sang-Whan;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • This study evaluates the seismic performance of reinforced concrete (RC) flat plate structures relation to the gravity shear ratio. For this purpose, 3 and 7 story framed buildings were designed for gravity loads only. Subsequently, a nonlinear static pushover analysis and a nonlinear time history analysis for the prototype buildings were carried out. In the nonlinear analysis, newly propose analytical slab-column joint model was utilized to capture punching shear failure and fracture mechanism in the analysis. The analytical results showed that seismic performance of RC flat plate frame is strongly influenced by the gravity shear ratio. In particularly, in the RC flat plate frame with a large gravity shear ratio the lateral strength and maximum drift capacity decreased significantly.

A Study on Unbalanced Moment of Flat Plate Exterior Connections (플랫 플레이트 외부접합부의 불균형모멘트에 관한연구)

  • Choi, Hyun-Ki;Beck, Seong-Woo;Back, Young-Soo;Jin, Eon-Sik;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1-4
    • /
    • 2008
  • Flat plate slab has been widely used in high rise building for its remarkable advantages. However, Flat plate structures under lateral load are susceptible to punching shear of the slab-column connection. Exterior slab-column connections has an unsymmetrical critical section for eccentric shear of which perimeter is less than that of interior connection, and hence, around the connection, unbalanced moment and eccentric shear are developed by both gravity load and lateral loads. Therefore, exterior connections is susceptible to punching shear failure. For that reason, this study compare ACI 318-05 to CEB-FIP MC 90 that is based on experiment results and existing data of flat plate exterior connections. This study shows that compared to CEB-FIP MC 90 is more exact about eccentric shear stress, unbalanced moment and Both of all are not suitable in large column aspect ratio. Considering gravity shear ratio, These are suitable but design condition only consider gravity shear ratio. So these should be considered differences from change of design condition

  • PDF

Strength Prediction Model of Interior Flat-Plate Column Connections according to Design Parameters (설계변수에 따른 플랫플레이트-기둥 접합부의 강도산정모형)

  • Lee, Do-Bum;Park, Hong-Gun;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.405-414
    • /
    • 2006
  • In the present study, a numerical analysis was performed for interior connections of continuous flat plate to analyze the effect of design parameters such as column section shape, gravity load and slab span on the behavioral characteristics of the connections. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, as the length of the cross section of column in the direction of lateral load increases and gravity load increases, the effective area and the maximum shear strength providing the torsional resistance decrease considerably. And as the slab span loaded with relatively large gravity load increases, the negative moment around the connection increases and therefore the strength of connection against unbalanced moment decreases. By considering the effect of design parameters on the strength of the connections, the effective shear strength to calculate the torsional moment capacity of connection was proposed and the effectiveness of the proposed shear strength was verified.

A Reliability Analysis on Sliding of Offshore Gravity Platform (중력식 해양구조물의 활훈에 대한 신뢰도해석)

  • 이인모;이명재
    • Geotechnical Engineering
    • /
    • v.2 no.3
    • /
    • pp.37-50
    • /
    • 1986
  • The uncertainties encountered in the stability analysis for the foundation of offshore structures on clay are formulated in probabilistic terms and used to evaluate the reliability of the foundation design. The major sources of uncertainty are: soil properties, f.ave loads, and methods of analysis. The major part of the uncertainty in safety factor is contributed by the uncertainty in the undrained shear strength. All sources of uncertainties that affect the shear strength of clay are modeled and systematically analyzed. The in situ undrained shear strengths are evaluated by laboratory tests and cone penetration tests. The undrained shear strengths from the laboratory test and CPT, respectively at Statfjord B site in the North Sea, are used as an example in risk analysis. Using the CPT alone, the failure probability on sliding of gravity platform at Statfjord B is much larger than the failure probability using the laboratory undrained shear strengths. The major uncertainty of using the CPT as the estimate of th2 undrained shear strength of clay results from the correlation between the cone resistance and the undrained shear strength.

  • PDF

Nonlinear Analytical Model for RC Flat Plate Frames (RC 플랫 플레이트 골조의 비선형 해석모델)

  • Park, Young-Mi;HwangBo, Jin;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.241-244
    • /
    • 2008
  • In general, RC flat plate frames have been used as a gravity load resisting system(GLRS) in building. This system should be constructed with lateral force resisting system(LFRS) such as shear walls and brace frames. When lateral loads such as earthquakes occur, LFRS undergo displacement by which connected gravity systems experience lateral displacement. Thus, flat plate system designed as GLRS should be predict unbalanced moments and punching failure due to lateral deformation. This study developed an analytical mode for predicting nonlinear behavior of RC slab column connection for the seismic performance evaluation of RC flat plate frames. For verifying the analytical model, the test results of two flat plate specimens having two continous spans with the difference gravity shear ratio($V_g/{\phi}V_c$) were compared with the results of analysis. The developed model can predict the failure modes and punching failures.

  • PDF

Cyclic Lateral Load Test on the Punching Shear Strength and the Lateral Displacement Capacity of Slab-Column Connections (슬래브-기둥 접합부의 펀칭강도 및 횡변위 성능에 관한 반복 횡하중 실험)

  • Choi, Jung-Wook;Song, Jin-Gyu;Kim, Jun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.99-108
    • /
    • 2007
  • In the flat-plate slab design of the KCI and ACI building code, the punching shear strength of connections with shear reinforcement can increase one and half times to that of connections without shear reinforcement. And the ACI-ASCE committee 352 recommendations propose limiting the direct shear ratio $V_g$/$V_c$ on interior connections to 0.4 to insure adequate drift capacity. In this study, four interior column-slab connections were tested to look into the punching shear strength and the lateral displacement capacity of the flat-plate slab with and without shear reinforcement under cyclic lateral loading. Based on the test results, it is found that the provision about punching shear strength in the codes may appropriate for the gravity loading only whereas it is unconservative for the lateral loading and that the limit of ACI-ASCE committee 352 appears conservative.

Displacement Characteristics of Soft Ground by Embankment Construction (제방축조에 의한 연약지반의 변위특성)

  • Ahn, Kwangkuk;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.29-39
    • /
    • 2007
  • In this study, the centrifugal tests were fulfilled to analyze the displacement characteristics caused by the embankment construction on soft ground. Embankment of height, undrained shear strength and with or without geotextile were selected to evaluate the displacement characteristics of soft ground by embankment. As a result, the replacement section without geotextile showed the parabola shape. The replacement section with geotextile showed the trapezoidal shape which represents the uniform settlements. The replacement angle is increasing nearly lineally with increasing the height of embankment and G-level. The position, where the maximum horizontal displacement occurred, was between $0.24H_0$ and $0.35H_0$ and was at $0.3H_0$ on the average. In the case of with and without geotextile, the relationship between the maximum settlement of ground(S) and maximum horizontal displacement(${\delta}_m$) was ${\delta}_m$ = 0.60S, ${\delta}_m$ = 0.54S, respectively.

  • PDF

Strength of Interior Plat Plate-Column Connections Subjected to Unbalanced Moment (불균등 휨모멘트를 받는 플랫 플레이트-기둥 접합부의 강도산정모델)

  • 최경규;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.961-972
    • /
    • 2002
  • Flat plate structures under lateral load are susceptible to the brittle shear failure of plate-column connection. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, according to previous studies, current design methods do not accurately estimate the strength of plate-column connection. In the present study, parametric study using nonlinear finite element analysis was performed for interior connections. Based on the numerical results, a design method for the connection was developed. At the critical sections around the connection coexist flexural moment and shear developed by lateral and gravity loads, and maximum allowable eccentric shear stresses were proposed based on the interactions between the flexural moment and shear, The proposed method can precisely predict the strength of the connection, compared with the current design provisions. The predictability of the proposed method was verified by the comparisons with existing experiments and nonlinear numerical analyses.

Nonlinear Seismic Analysis of Steel Buildings Considering the Stiffnesses of the Foundation-Soil System (기초지반강성을 고려한 철골 건축구조물의 비선형 지진해석)

  • Oh, Yeong Hui;Kim, Yong Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.173-180
    • /
    • 2006
  • The seismic responses of a building are affected by the base soil conditions. In this study, linear time-history seismic analysis and nonlinear pushover static seismic analysis were performed to estimate the base shear forces of 3-, 5-, and 7-story steel buildings, considering the rigid and soft soil conditions. Foundation soil stiffness, based on the equivalent static stiffness formula, is used for the damper, one of the Link elements in SAP 2000. The base shear forces of the steel buildings, estimated through time-history analysis using the general-purpose structural-analysis program of SAP 2000, were compared with those calculated using the domestic seismic design code, the UBC-97 design response spectrum. and pushover static nonlinear analysis. The steel buildings designed for gravity and wind loads showed elastic responses with a moderate earthquake of 0.11 g, while the elastic soft-soil layer increased the displacement and the base shear force of the buildings due to soil-structure interaction and soil amplification. Therefore, considering the characteristics of the soft-soil layer, it is more reasonable to perform an elastic seismic analysis of a building's structure during weak or moderate earthquakes.

Ring-shear Apparatus for Estimating the Mobility of Debris Flow and Its Application (토석류 유동성 평가를 위한 링 전단시험장치 개발 및 활용)

  • Jeong, Sueng-Won;Fukuoka, Hiroshi;Song, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.181-194
    • /
    • 2013
  • Landslides are known as gravitational mass movements that can carry the flow materials ranging in size from clay to boulders. The various types of landslides are differentiated by rate and depositional features. Indeed, flow characteristics are observed from very slow-moving landslides (e.g., mud slide and mud flow) to very fast-moving landslides (e.g., debris avalanches and debris flows). From a geomechanical point of view, shear-rate-dependent shear strength should be examined in landslides. This paper presents the design of advanced ring-shear apparatus to measure the undrained shear strength of debris flow materials in Korea. As updated from conventional ring-shear apparatus, this apparatus can evaluate the shear strength under different conditions of saturation, drainage and consolidation. We also briefly discussed on the ring shear apparatus for enforcing sealing and rotation control. For the materials with sands and gravels, an undrained ring-shear test was carried out simulating the undrained loading process that takes place in the pre-existing slip surface. We have observed typical evolution of shear strength that found in the literature. This paper presents the research background and expected results from the ring-shear apparatus. At high shear speed, a temporary liquefaction and grain-crushing occurred in the sliding zone may take an important role in the long-runout landslide motion. Strength in rheology can be also determined in post-failure dynamics using ring-shear apparatus and be utilized in debris flow mobility.